

方波、PWM、AK输出两线差分速度传感器IC

1. 产品特性

- AEC-Q100 Grade0 汽车级认证
- ISO26262 ASIL-B 认证
- 两线电流输出接口
- 检测速度和方向
- 方波、PWM和AK协议输出
- 固定、自适应磁滞类型
- 支持振动抑制
- 支持南极和北极背磁
- 宽工作温度范围: -40℃~150℃
- 单芯片解决方案,PCB_Less
- 封装形式: TS-2

2. 产品应用

- ABS轮速传感器
- 速度传感器

3. 产品描述

SC968X 是一款基于霍尔技术的集成式有源磁传感器,适用于ABS控制系统、iTPMS系统中的轮速检测。其基本功能是测量磁轮或铁磁性齿轮的速度和方向。两线电流接口,方波、 PWM 或 AK 协议进行通信。它有两种磁滞类型:隐藏式固定磁滞和可视自适应磁滞(微调选项)。出色的灵敏度和精度以及宽泛的工作温度范围等特点,使该传感器非常适合苛刻的汽车要求。SC968X采用PCB_Less封装,内置2.2nF 电容,具有出色的抗电磁干扰能力。

芯片采用 TS-2 封装形式,亚光镀锡,采用无卤绿料,满足环保要求。

图1 TS-2外观图

目录

<i>1. 产品特性</i> 1	10.2 PWM 协议说明 15
2. 产品应用 1	10.3 非校准和校准模式 16
3. 产品描述 1	10.4 磁滞定义 17
4. 引脚定义 3	10.5 方向变化、振动和异常状态
5. 订购信息4	<i>11.EMC(电磁兼容)</i> 18
6. 极限参数 5	11.1 EMC 电路 18
7. 静电保护 5	11.2 ISO 7637
8. 工作参数 6	11.3 ISO 11452 19
8.1 工作范围 6	12. 典型应用20
8.2 电气特性	13. 封装信息21
8.3 磁特性 8	14. 编带信息22
9. 功能框图	15. 历史版本23
10. 功能描述 9	
10.1 AK 协议说明 9	

4. 引脚定义

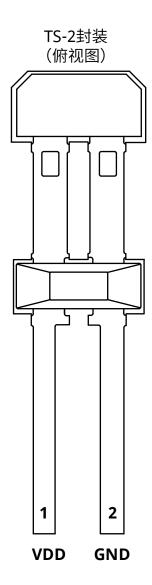


图 2 引脚描述

5	引脚		**** ********************************
名称	序号	类型	描述
VDD	1	电源	5.3V ~ 20V 供电电源
GND	2	地	地

5. 订购信息

产品名称	丝印	输出形式	温度范围(℃)	封装外形	包装方式	数量
SC9682TS-TR-Q	9682	Square	-40 ~ 150	TS-2	编带	1500 颗/盘
SC9683TS-TR-Q	9683	PWM	-40 ~ 150	TS-2	编带	1500 颗/盘
SC9684TS-TR-Q	9684	AK	-40 ~ 150	TS-2	编带	1500 颗/盘

6. 极限参数

工作的自然温度范围内(除非另有说明)

符号	参数	测试条件	最小值	最大值	单位
		Tj=170°C	-	16.5	V
		T=150°C	-	20	V
V_{DD}	正向耐压	t=10 X 5min	-	22	V
		t=10 X 5min, $R_M \ge 75\Omega$ included in V_{DD}	-	24	V
		t=400ms, R_M ≥75Ω included in V_{DD}	-	27	V
V _{DDR}	反向耐压	t<1h, R_M ≥75Ω included in V_{DD}	-18	-	V
T	与 一满中海	t<4h, R_M ≥75Ω included in V_{DD} , external current limitation	0	100	mA
I_{rev}	反向灌电流	t<1h, R_M ≥75Ω included in V_{DD} , external current limitation	0	200	mA
		5000h, V_{DD} <16.5V, R_{M} \geq 75 Ω included in V_{DD}	-	150	°C
T _J	最大结温	500h, V_{DD} <13V, R_{M} ≥75Ω included in V_{DD}	-	160	°C
		1h, V_{DD} < 13V, R_{M} ≥ 75 Ω included in V_{DD}	-	170	°C
T _{STG}	储存温度		-65	175	°C
R _{thJA}	封装热阻	参照 JESD51-1 标准	-	190	°C/W

备注:

高于此处列出的压力可能会导致器件永久损坏,长时间暴露在绝对最大额定值条件下可能会影响器件的可靠性。

7. 静电保护

符号	参数	测试条件	最小值	最大值	单位
V _{ESD_HBM}	НВМ	参照 AEC-Q100-002E HBM 标准,R=1.5kΩ,C=100pF	-8	8	kV
V _{ESD_CDM}	CDM	参照 AEC-Q100-011C CDM 标准	-750	750	V

8. 工作参数

8.1 工作范围

工作的自然温度范围内(V_{DD}=12V,除非另有说明)

符号	参数	测试条件	最小值	典型值	最大值	单位
V	工作电压	Square and PWM	5.3	12	20	V
V_{DD}	工作电压	AK protocol	6.5	12	20	V
V _{AC}	电源抗交流干扰	V _{DD} =13V, 0 <f<sub>mod<150KHz</f<sub>	-	-	6	Vpp
V _{res_PWM}	复位电压	Square and PWM output, reset voltage	3.6	-	4.1	V
V _{rel_PWM}	返回电压	Square and PWM output, return voltage	4.7	-	5.3	V
V _{res_AK}	复位电压	AK protocol output, reset voltage	4.0	-	4.5	V
V _{rel_AK}	返回电压	AK protocol output, return voltage	5.8	-	6.5	V
dT_{j_Dir}	每个磁周期方向判断有效 允许的温度漂移范围	Valid for △B _{dir} >1.9mT	-7.5	-	7.5	К
dT_{j_Speed}	静止时的温度变化	Valid for △B>3mT	-150	-	150	K
$\triangle B_{stat,I/r}$	外部 2 霍尔点背磁偏差	B _{left} -B _{right} when the gear is stationary	-30	-	30	mT
$\triangle B_{\text{stat,m/o}}$	中间与外部霍尔背磁偏差	B _{center} -B _{right} when the gear is stationary	-30	-	30	mT
∆B	差分磁场	B _{left} -B _{right} when the gear is rotating	-120	-	120	mT
f _{mag}	信号频率		0	-	12	kHz
f _{dir_min}	方向检测最小频率		-	0	1	Hz

8.2 电气特性

工作的自然温度范围内(V_{DD}=12V,除非另有说明)

符号	参数	测试条件	最小值	典型值	最大值	单位
I_{Low}	供电电流低值		5.9	7.0	8.4	mA
I_{Mid}	供电电流中间值		11.8	14.0	16.8	mA
I_{High}	供电电流高值		23.6	28.0	33.6	mA
	Supply current @ V _{res_min} < V _{DD}		1	1	-	mA
${ m I}_{\sf Fault}$	ASIL 报警电流		1.5	3.0	3.9	mA
dIx/dV _{DD}	电流线性调整率		-	-	90	uA/V
t _r , t _f	输出上升/下降时间	10% and 90% value, R_M =50 Ω Tj<170 $^{\circ}$ C	6	-	26	mA/us
t _{d_input}	输出校准延时	Additive to power up time	-	220	300	us
t _{PO}	上电时间		-	-	1	ms

方波、PWM、AK输出两线差分速度传感器IC

n _{start}	霍尔感应点初始偏差校准 所需磁场信号边沿数		-	-	3	edges
n _{DZ-Startup}	非校准模式下的边沿个数		-	-	4	edges
n _{supp}	输出停止需要脉冲个数		-	-	1	pulses
n _{DZ-Start}	输出第1个脉冲所需 磁场信号边沿数		1	-	2	edges
n _{LM}	初始 LM 测量所需脉冲数		3	-	4	pulses
n _{DR-Start}	初始方向有效方向信息 检测,所需脉冲数	4th pulse has valid direction information $\triangle B_{dir}\!\!>\!\!2\!$	-	-	4	pulses
	方向突变后识别方向	2nd pulse has valid direction information △B _{dir} ≥4*△B _{limit}	-	-	2	pulses
n _{DR_change}	所需脉冲数	6th pulse has valid direction information $\triangle B_{dir} \ge 2 + \triangle B_{limit}$	-	-	7	pulses
f _{dir-limit}	输出方向信息情况下 能支持的极限检测频率		-	-	2700	Hz
	小气隙输出抖动	∆B≥2mT, 1sigma, T≤150°C, f=1kHz	-0.7	-	0.7	%
$S_{jit ext{-close}}$	7、7、凉棚山谷初	∆B≥2mT, 1sigma, T≤170°C, f=1kHz	-2	-	2	%
		2mT>△B>△B _{limit} , 1sigma, T≤150°C, f=1kHz	-2	-	2	%
S _{jit-far}	大气隙输出抖动	2mT>△B>△B _{limit} , 1sigma, T≤170°C, f=1kHz	-4	-	4	%
S _{jit-AC}	电源有纹波情况下 输出抖动	V_{DD} =13V \pm 6Vpp, 1sigma, 0< f_{mod} <150kHz \triangle B=15mT	-0.5	-	0.5	%
S _{jit-speed}	速度脉冲抖动	rising edge of speed pulse relative to magnetic edge change	0	-	0.7	us
	启动和非校准模式下输出 边缘的系统相位误差	- dage on ange	-90	-	90	o
SC9684(AK Prot	ocol)		•			
t _p	速度脉冲宽度		42.5	50.0	57.5	us
tp	数据位脉冲宽度		42.5	50.0	57.5	us
t _{stop}	零速脉冲周期		127.5	150.0	172.5	ms
t _p /2	初始脉冲宽度		20	25	30	us
t _{p_Bit_Supp}	位抑制导致脉冲宽度偏移		42.5	50.0	57.5	us
SC9683 (PWM P	rotocol)					
t _{pre-low}	输出延时脉冲宽度		38	45	52	us
t _{warning}	报警模式脉冲宽度		38	45	52	us
t _{DR-L}	DR-L 模式脉冲宽度		76	90	104	us
t _{DR-R}	DR-R 模式脉冲宽度		153	180	207	us
t _{DR-L&EL}	DR-L 和 EL 脉冲宽度		306	360	414	us
t _{DR-R&EL}	DR-R 和 EL 脉冲宽度		616	720	828	us
f _{EL, max}	DR 和 EL 模式切换频率		-	117	-	Hz
t _{stop}	零速脉冲宽度		1.232	1.44	1.656	ms
-	•			0		

SC968X

方波、PWM、AK输出两线差分速度传感器IC

T_{stop}	零速脉冲周期		590	737	848	ms
SC9682(Square P	SC9682(Square Protocol)					
Duty	占空比	V_{DD} =12V, $\triangle B$ >2mT, sine wave	40	50	60	%

8.3 磁特性

符号	参数	测试条件	最小值	典型值	最大值	单位
$\triangle B_{limit}$	极限阈值		0.53	0.75	0.97	mT
$\triangle B_{limit_drift}$	极限阈值偏移		-5	-	3	%
$\triangle B_{LR}$	报警阈值		1.02	1.60	2.18	mT
$\triangle B_{LR_drift}$	报警阈值偏移		-5	-	3	%
$\triangle B_{LR}/\triangle B_{limit}$	阈值比		1.7	2.0	2.5	
			0.53	0.75	0.97	mT _{pk-pk}
△B _{start_up}	非校准模式(启动期间)检测磁场		1.22	1.50	1.78	mT _{pk-pk}
∠\Dstart_up	边缘所需的差分磁场变化量		2.14	2.50	2.86	mT _{pk-pk}
			4.44	5.00	5.56	mT _{pk-pk}
HYSmin	速度通道最小磁滞阈值		0.53	0.75	0.97	mTpkpk
ПYЭmin			1.22	1.5	1.78	mTpkpk
HYS _{adaptive}	速度通道,自适应磁滞阈值			12.5		%
TIT Sadaptive				25		%
LM=0			<0.8	<=1	<=1.2	
LM=1			>0.8	>1	>1.2	
LM=2			>1.48	>1.75	>2.1	
LM=3	· 	2004 stitute a security was AV	>2.5	>2.95	>3.6	
LM=4	信号幅度	99% criteria,according to AK	>4.2	>4.95	>6	
LM=5			>7	>8.25	>9.9	
LM=6			>12	>14.2	>17.1	
LM=7			>21	>24.7	>29.7	

9. 功能框图

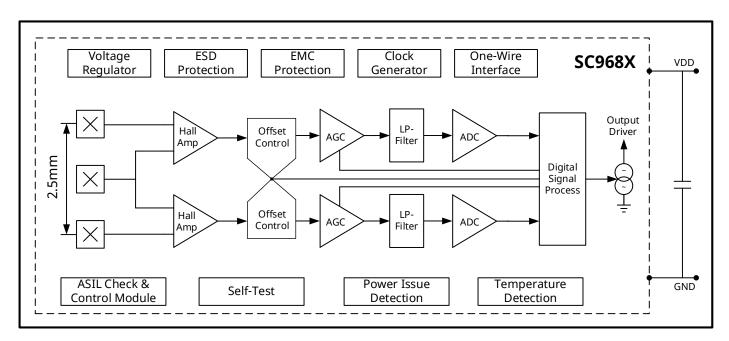


图 3 功能框图

10. 功能描述

10.1 AK 协议说明

协议包括一个前置位、一个速度脉冲和九个数据信息位(数据协议)。数据协议采用曼彻斯特编码。这意味着一个比特的值是通过信号在一定时间窗口内的中电流值 (I_{mid}) 和低电流值 (I_{low}) 之间的上升或下降来编码的。"0"用中低转换表示,"1"用中低转换编码。未使用的位作为默认值输出。

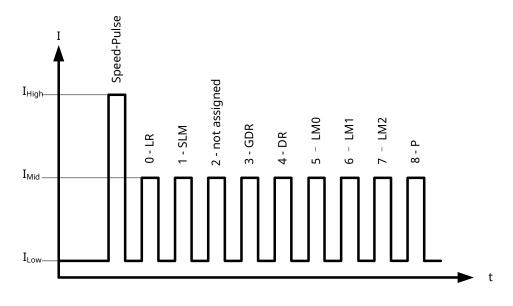


图 4 AK 数据位编码

10.1.1 数据位信息

比特位	描述	符号	值	说明
0	错误位,距离过近报警	LR	0	"1",如果△B<△B _{LR} ,(1=错误)
1	信号幅度有效位	SLM	1	值=,则 LM0,LM1,LM2 测量有效;值=1,则无效
2	未定义		0	
3	方向有效位	GDR	0	"1"=有效,"0"=无效
4	旋转方向信息	DR	0	"0"=正方向
5		LM0	0	气隙编码的 LSB
6	气隙编码	LM1	0	
7		LM2	0	气隙编码的 MSB
8	奇偶校验位	Р	计算结果	始终设置为偶数奇偶校验(包含奇偶校验位)

10.1.2 曼切斯特编码

数据协议采用曼彻斯特编码。这意味着一个比特的值是通过信号在一定时间窗口内从中间电流值(I_{mid})到低电流值(I_{low})之间的上升或下降来编码的。从低电平过渡到中间值对应 "1",从中间值过渡到低电平对应 "0"。传感器输出电流的下降沿和上升沿始于数据协议的中间 ($=t_p/2$),见图 5 示例的底部。

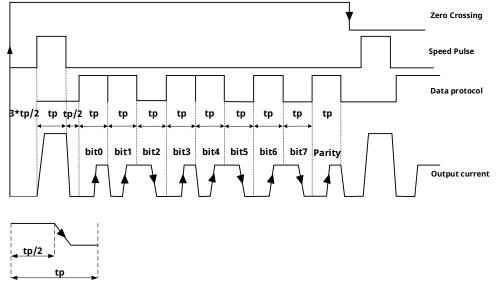


图 5 曼切斯特编码

10.1.3 正常速度下的 AK 协议

以正常速度(信号频率低于 1800Hz)传输所有数据位。首先发送初始位(I_{low}),持续时间为 $t_p/2$ 。然后发出持续时间为 t_p 的速度脉冲,接着发送电流电平 I_{low} ,持续时间为 $t_p/2$ 。之后发送数据协议。

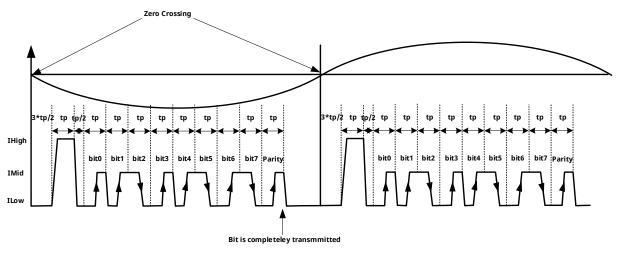
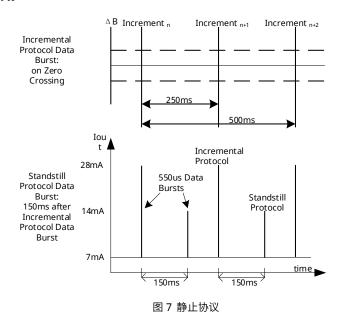


图 6 正常速度下的 AK 协议

10.1.4 高速下的 AK 协议

速度越高,数据协议越短(最后一个比特被切断)。下表显示了不同信号频率下的传输位数。在高速情况下,串行数据协议会缩短,因为到下一个速度脉冲的时间比协议周期短。因此,末尾的数据位被 "切断"。在每个速度范围内,传输的附加信息位数尽可能多。


被称为 "比特残缺"的部分传输比特的输出被抑制。协议的缩短不会导致任何 "比特残缺"(未完全传输的比特)。这意味着,受缩短影响的比特在任何情况下都会被完整传输,也就是说,已经开始传输的比特也必须传输到终点。必须输出当前电平 I_{low} ,而不是受缩短影响的比特。在传感器的所有速度范围和所有常规运行状态下,即在静止协议中,都能可靠地抑制比特残缺。

电信号频率	数据传输位数
<1818Hz (1800Hz)	9(位 0 - 位 8)
<2000Hz (2000Hz)	8(位 0 - 位 7)
<2222Hz (2200Hz)	7(位 0 - 位 6)
<2500Hz (2400Hz)	6(位 0 - 位 5)
<2857Hz (2800Hz)	5(位 0 - 位 4)
<3333Hz (3200Hz)	4(位 0 - 位 3)
<4000Hz (4000Hz)	3(位 0 - 位 2)
<5000Hz (5000Hz)	2(位 0 - 位 1)

10.1.5 AK 静止协议

如果在超过 t_{stop} 的时间内没有识别到增量,集成电路将开始发送零速协议。该协议每 150ms+/-20% 发送一次。在该协议中,速度脉冲的当前值被设置为 I_{mid} ,所有其他比特的传输方式如前所述。对于非常慢的车轮速度,可以在连续的速度脉冲之间发送多个静止协议。

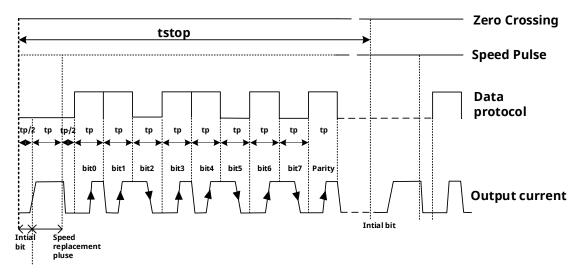


图 8 静止状态下协议输出情况

静止状态下的位传输说明:

如果检测到输入磁信号有增量,静止协议将被终止。速度脉冲 I_{high} 与启动初始位(电平 I_{low})具有优先权。由于静止协议中还需要抑制 "比特残缺",因此协议的中断实际上只能发生在两个数据比特之间,而不能发生在正在进行的比特传输过程中。初始位使速度脉冲之前始终有一个电流电平 I_{low} ,持续时间至少为 $t_p/2$ 。这有助于 ECU(电子控制单元)检测速度脉冲。

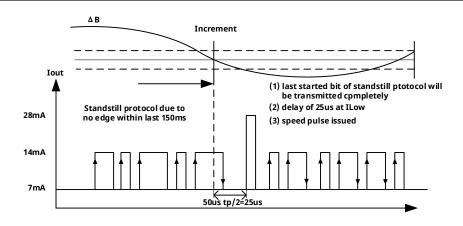


图 9 在静止协议下运用比特残缺抑制机制来启动车轮

在静止协议中 "方向有效性 "和 "方向"的处理方式:

在任何静止状态下,DR 的输出值均为零(默认值),GDR 的输出值为无效 (=0)。在前 5 个连续静止协议中,方向算法被重置。因此,在接下来的三次过零(速度脉冲)时,将进行方向检测和换向检测(GDR=无效,DR=默认),GDR 有效,并在静止后的第三个速度脉冲时输出相应的方向。

在静止协议中"信号振幅测量的有效性"的处理方式:

在静止协议期间,信号测量的有效性(SLM)传输为 1(无效),信号振幅(相对于 LR 的电平)传输为 0。在连续执行前 5 个静止协议时,SLM/LM 重置为无效。在找到两个新的 \triangle B 极值之前,SLM 一直处于无效状态。根据 \triangle B 的振幅和静止协议的相位,在每 5 个静止协议之后的第二个、第三个或第四个速度协议中,SLM 将有效。

在静止协议中错误位"距离过近报警"(=LR 位)的处理方式:

在静止协议中,它以"0"(无错误)的形式传输。

在连续执行前 5 个静止协议时,它将被重置为 0。静止协议 LR 保持为 "0"(无错误),直到发现两个新的极值 \triangle B。 初始位使速度脉冲之前始终有一个电流电平 I_{low} ,持续时间至少为 $t_p/2$ 。这有助于 ECU 检测速度脉冲。

10.1.6 比特残缺抑制

本段将介绍轮速传感器(WSS)比特残缺抑制的实现方法。实现比特残缺抑制的原理如下:

速度脉冲和数据协议输出的恒定时移:

新协议开始时,传感器输出总是完全偏移一个位时间 t。。这相当于时间输出偏移,其效果如下:

初始位不会在新协议开始时立即启动,这可能发生在高速进行的数据协议期间。相反, t_p 最初总是等待一个时间偏移量,在该偏移量内监控最后一个正在进行的协议输出。如果比特输出仍处于活动状态,则该比特输出将被完全传输而不会被切断。这将有效防止出现比特中断。在此偏移时间 t_p 内,将抑制最后一个协议的下一个可能的数据位。这样,当前比特的传输将完成,而(最后一个协议的)其他比特的传输将被阻止。在偏移时间结束时,开始传输初始位。该程序的优点:在静止协议中也同样有效,如果在正在进行的静止协议期间检测到输入磁信号有新的增量,则当前正在进行的比特传输不会在任何 "比特残缺 "中结束。额外比特的传输将被抑制。延迟阶段结束后,新的传输开始于初始位 $t_p/2$,然后是速度脉冲和数据协议。

下图显示了根据上述方法,在3个具有代表性的案例中抑制比特残缺的效果。

情况 1: 不切断前一个协议。

两个连续协议之间的时间足以传输所有比特。然而,新协议开始于输入磁信号新增量时刻,其恒时输出偏移长度为 t_p 。随后是初始位宽 t_p /2 ,然后是速度脉冲等。

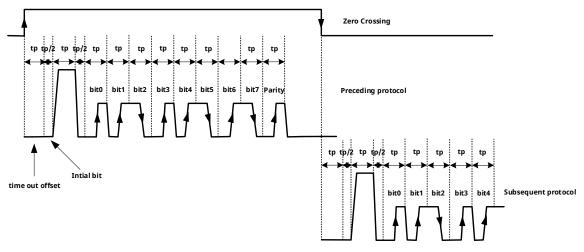


图 10 不切断前一协议

情况 2: 前面协议的最后一位被切断。

当前一个协议的最后一个比特仍在传输时,如果磁输入信号出现新的增量,两个连续协议之间的时间不再充足。此时,新协议重新开始,恒时输出偏移量为 t_p 。不过,传感器现在已经意识到比特传输仍在进行。这将在当前运行的输出偏移中完成传输。输出偏移结束后,以 $t_p/2$ 开始传送初始位,然后是速度脉冲等。

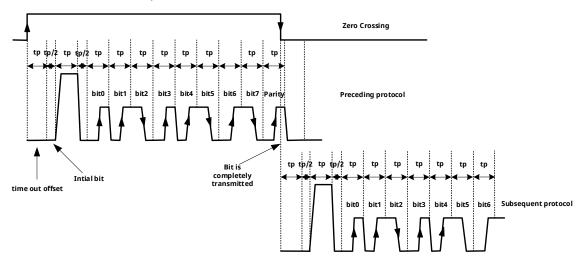
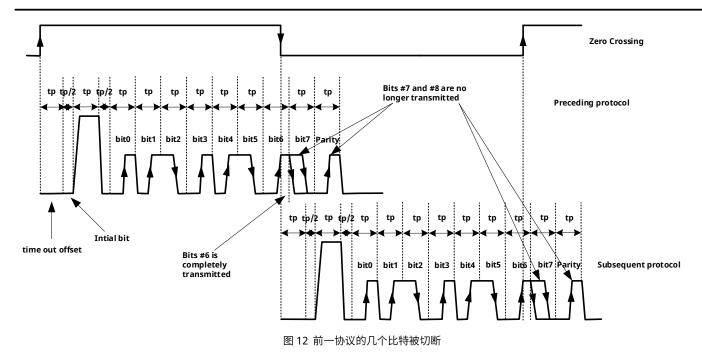



图 11 前一协议的最后一位被切断

情况 3: 前面协议几个比特被切断。

例如,当输入信号出现新的增量,在前一协议的第 6 位仍在传输时。此时,新协议以 t_p 长度的恒定时间输出偏移再次开始。传感器会意识到位传输仍在进行。在当前运行的输出偏移时间内,前一协议的第 6 位将被完全传输。此外,仍然缺失的 7 号和 8 号位(奇偶校验)被抑制,不再传输。因此,线路再次恢复干净,在输出偏移结束后,初始位随 $t_p/2$ 之后传输,然后是速度脉冲等。

10.2 PWM 协议说明

Stand Still 模式:安装距离远或者齿轮不转, △B 小于 7GS,芯片输出为 1.44ms 脉宽的波形。

报警模式: 当安装距离处于临界位置,△B在7GS和12GS之间,芯片输出为45µS脉宽的波形。

EL 模式: 当安装距离适中, \triangle B 在 12GS 和 65GS 之间,转速较慢的情况下,脉冲频率小于 117HZ,正转(VDD \rightarrow GND)输出 360μS 脉宽的波形,模式为 DR-L&EL,反转(GND \rightarrow VDD)输出 720μS 脉宽的波形模式为 DR-R⪙转速较快情况下,脉冲频率大于 117HZ,正转(VDD \rightarrow GND)输出 90μS 脉宽的波形,反转(GND \rightarrow VDD)输出 180μS 脉宽的波形。

DR 模式: 当安装距离较近,△B 大于 65GS,无论转速快慢,正转(VDD \rightarrow GND)输出 90 μ S 脉宽的波形,模式为 DR-L,反转(GND \rightarrow VDD)输出 180 μ S 脉宽的波形,模式为 DR-R。

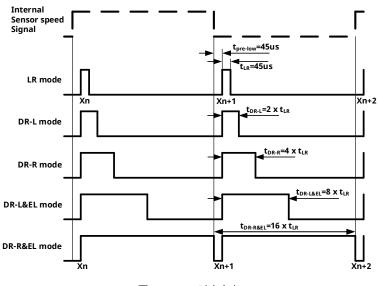
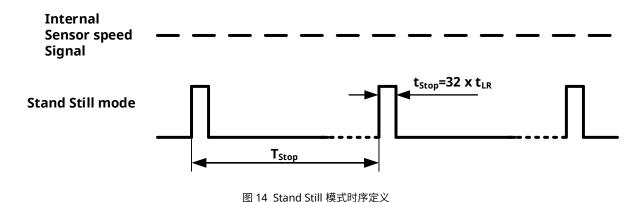



图 13 PWM 时序定义

10.3 非校准和校准模式

经过初始校准延迟时间(t_{d_input})后,差分磁信号 ΔB 由模数转换器(ADC)跟踪,并在数字电路中进行监测。为了检测信号,输入差分磁信号需要超过 DNC(数字噪声常数),当信号斜率被识别为上升沿(或下降沿),且信号变化超过 DNC,就会记录第一个极值,并触发第一个输出脉冲。DNC 值随磁场振幅变化,导致磁输入信号和输出信号之间的相移变化。数字噪声常数由信号幅值决定。第一个 DNC(=2 X ΔB limit),如图中箭头所指。当信号变化再次超过下一个下降沿(相反则为上升沿)的新 DNC 值(按 ΔB (min1 + max 1) /2 计算)时,触发第二个输出。当记录到最大和最小值时,将进行偏移修正。这将导致输出信号相移,传感器进入校准模式。在校准模式下,差分磁信号的过零触发。在校准模式下,最小/最大检测值降至 pk-pk 的 1/4。最小 DNC 为 2 x ΔB limit 。在此范围内,连续速度脉冲的标称延迟约为 180°。

在未校准和已校准模式下处理附加信息位:

信号幅度测量:如果找到两个有效极值,则 SLM 有效(通电后的第一个极值无效)。最新的第四协议 SLM 有效。 高频启动可能导致协议缩短。根据 "比特残缺抑制 "规则执行比特抑制。

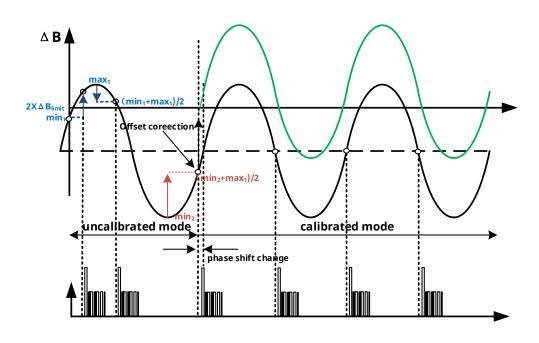


图 15 启动时刻非校准模式到校准模式的转换

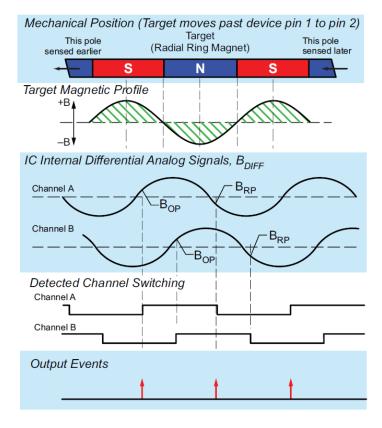


图 16 方向检测

用作输出切换通道的通道 A 或通道 B。这在启动时由第一个切换通道决定。非切换通道用于方向检测和计算。

10.4 磁滞定义

自适应磁滞在小气隙(大信号)时具有大磁滞的优势。与固定磁滞相比,微小的振动不会导致额外的开关。根据图 17, 自适应磁滞的计算公式为峰值至峰值速度信号差值的 25%。最小磁滞由微调设置得出。

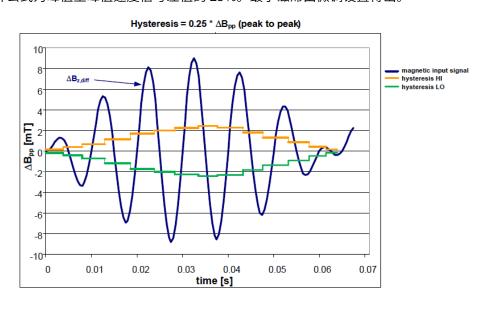
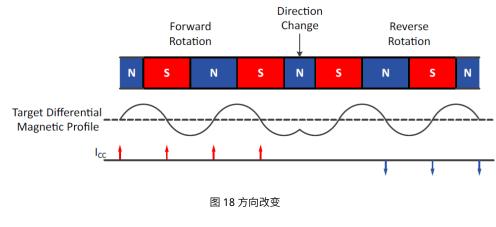



图 17 自适应迟滞

10.5 方向变化、振动和异常状态

在正常运行过程中,SC9683 和 84 会受到目标旋转方向变化、目标振动以及气隙突变等异常事件的影响。在校准过程中,带有方向信息的输出脉冲会立即传输到输出端。根据目标设计、气隙和目标相位的不同,方向可能会出现瞬间错误。在运行模式下改变方向后,方向变化会立即传输到输出端。

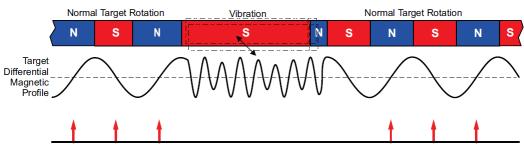


图 19 振动行为

11. EMC(电磁兼容)

11.1 EMC 电路

下面显示了带有反向偏置和过压保护功能的 EMC 测试电路。

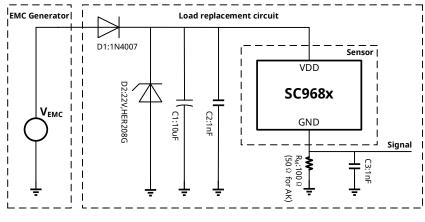


图 20 EMC 测试电路

11.2 ISO 7637

参考 ISO 7637-2; 2004; ΔB=2mT(正弦信号振幅); V_{DD} =13.5V; f_{B} =100Hz, T_{A} =25°C, R_{M} =30Ω

符号	参数	级别/类型	等级
	测试脉冲 1	IV /-100V	С
	测试脉冲 2a	IV /75V	А
	测试脉冲 2b	- /10V	С
V	测试脉冲 3a	IV /-150V	Α
V _{MEC_7637_2}	测试脉冲 3b	IV /100V	А
	测试脉冲 4	IV /-7V	В
	测试脉 5a	IV /86.5V	С
	测试脉冲 5b	Us=28.5V	С

参考 ISO 7637-3 1995; ΔB=2mT(正弦信号振幅); V_{DD}=13.5V; f_B =100Hz,T_A=25°C,R_M=30Ω

符号	参数	级别/类型	等级
V MEC_7637_3	测试脉冲 1	IV /-30V	А
	测试脉冲 2	IV /30V	А
	测试脉冲 3a	IV /-60V	А
	测试脉冲 3b	IV /40V	А

11.3 ISO 11452

参考 ISO11452-3 2001; ΔB=20Gs, V_{DD}=13.5V; f_B =100Hz, T_A=25℃

符号	参数	级别/类型	等级
E _{TemCell}	TEM 测试	IV/250V/m	CW; AM=80%, f=1kHz

参考 ISO11452-4 2011; Stress =1-400MHz; V_{DD} =13.5V, f_B =100Hz; T_A =25 $^{\circ}$ C

符号	参数	级别/类型	等级
BCI open		200mA	I
BCI close		200mA	I

参考 ISO11452-8 2007; V_{DD}=13.5V,f_B=100Hz; T_A=25°C

符号	参数	级别/类型	等级
ITMF_DC		2mT	I
ITMF_AC			II

12. 典型应用

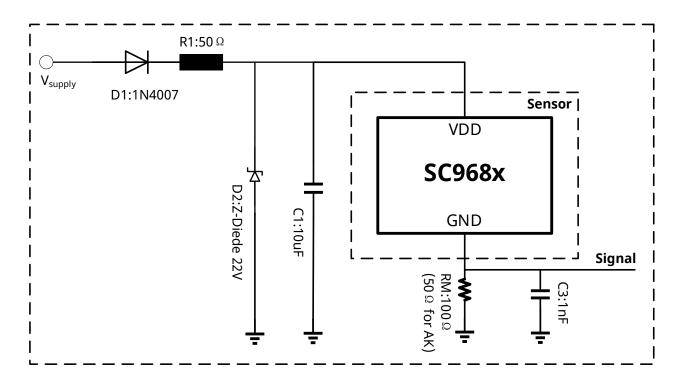
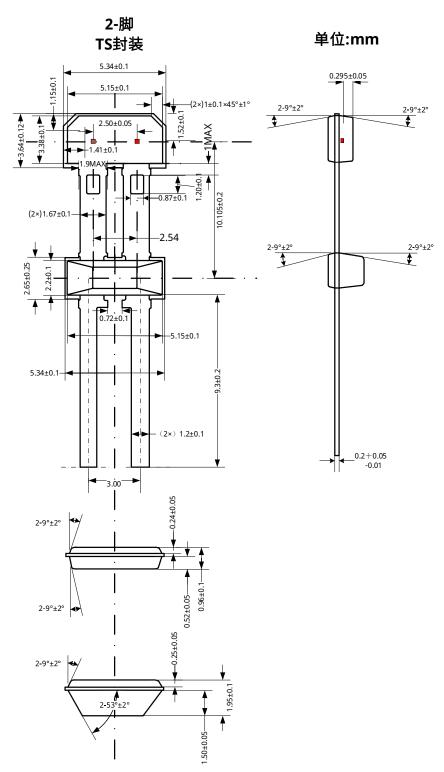



图 21 典型应用电路

13. 封装信息

注:

- 1.供应商可选的实际本体和管脚形状尺寸位于图示范围内。
- 2.高度不包括模具浇口溢料。
- 3.霍尔板间距2.5mm

如果未指定公差,则尺寸为公称尺寸。

图 22 封装尺寸

14. 编带信息

图 23 编带尺寸

符号	规格(毫米)
А	0±0.5
В	0±0.3
D	4±0.3
F	3±0.2
Н	24±0.5
H1	14.48±0.5
H2	9±0.5
L	36.4±0.2
Р	12.7±0.3
P1	6.35±0.4
P2	6.35±0.4
Т	≤1
w	18.0±0.3
W1	6±0.5
W2	0-0.8

15. 历史版本

版本号	日期	描述
Rev.E0.1	2022-04-27	初版规格书
Rev.E0.2	2023-12-12	增加抖动抑制
Rev.A1.0	2025-03-26	正式发布