

ZH6350Athree-phase PN half-bridge pre-driver

Features:

- Up to 40V, three-phase PN half-bridge drive
- Driving capability of 100mA
- Hot plug shoot-through protection
- Logic shoot-through protection
- Adaptive dead-time
- Undervoltage protection
- Available in SOP-16 and QFN-16 package

Applications:

- Fans
- Water pumps
- Massage guns
- Power tools under 20A
- Other three-phase motor drivers

Pin Diagram	NO	Symbol	I/O	Function Description
	1	GND	Р	Ground
	2	NC		No connection
	3	LI1	Ι	Channel 1 Low-side Input
	4	HI1	Ι	Channel 1 High-side Input
GND O VM	5	LI2	Ι	Channel 2 Low-side Input
	6	HI2	Ι	Channel 2 High-side Input
	7	LI3	Ι	Channel 3 Low-side Input
	8	HI3	Ι	Channel 3 High-side Input
HI2 HO2	9	НОЗ	0	Channel 3 High-side Output
	10	LO3	0	Channel 3 Low-side Output
	11	HO2	0	Channel 2 High-side Output
	12	LO2	0	Channel 2 Low-side Output
SOP-16 (ZH6350AEC)	13	HO1	0	Channel 1 High-side Output
	14	LO1	0	Channel 1 Low-side Output
	15	NC		No connection
	16	VM	Р	Power

Pin Diagram and Pin Descriptions:

ZH6350A DS ZH6350A-2022-11

Pin Diagram	NO	Symbol	I/O	Function Description
	1	LI1	Ι	Channel 1 Low-side Input
	2	HI1	Ι	Channel 1 High-side Input
NC GND VM NC	3	LI2	Ι	Channel 2 Low-side Input
	4	HI2	Ι	Channel 2 High-side Input
	5	LI3	Ι	Channel 3 Low-side Input
HI1 2 11 HO1	6	HI3	Ι	Channel 3 High-side Input
LI2 3 10 LO2	7	НОЗ	Ι	Channel 3 High-side Output
	8	LO3	Ι	Channel 3 Low-side Output
	9	HO2	0	Channel 2 High-side Output
5 6 7 8	10	LO2	0	Channel 2 Low-side Output
	11	HO1	0	Channel 1 High-side Output
QFN-16 (ZH6350ANC)	12	LO1	0	Channel 1 Low-side Output
	13	NC		No connection
	14	VM	Р	Power
	15	GND	Р	Ground
	16	NC		No connection

Absolute Maximum Ratings

Parameter	Symbol	Value	Unit
Power Supply Voltage	VM	40	V
Operating Junction Temp	T_{J}	-40~150	°C
High-side Output Voltage	VO _{HI}	VM-6~VM+1	V
Low-side Output Voltage	VO _{LOW}	-1~6	V
Control Input Voltage	VI	-1~6	V
Peak Output Current	I _{PEAK}	1	А

Recommended Operating Conditions

Parameter	Symbol	Value	Unit
Power Supply Voltage	VM	2.8~40	V
Control Input Voltage	V _{INX}	0~5	V
Ambient Temperature	TA	-40~125	°C

Ordering Information

Full Name	Package	Packaging	Quantity
ZH6350ANC	QFN-16	Reel	5000
ZH6350AEC	SOP-16	Reel	4000

Electrical Characteristics

Parameter	Symbol	Test Conditions	Min	Typical	Max	Unit
Standby	I _{STANDBY}	Hix=0, Lix=0		50	100	uA
Current				50	100	
Operating	Icc	Hix=0, Lix=1		220	400	uA
Current		Hix=1, Lix=0		270	400	uA
Input High	V _{INH}		1.6	2.0	2.4	V
Voltage						
Input Low	V _{INL}		0.6	0.8	1.0	V
Voltage						
Pull-down	R _{PD}			200		kΩ
Resistor						
Output	Roh	Hix=0, Hox=VM-0.2V		3		Ω
Impedance	R _{OL}	Lix=0, Lox=0.2V		2		Ω
Strong	V_{STRONG_H}	VM-H _{OX}		1.1		V
Shutdown	V _{STRONG_L}	Lox-GND		1 1		V
Threshold				1.1		
Drive Current	$I_{H_{ON}}$	Hix=1, Hox=VM		100		mA
	I _{H_OFF}	Hix=0, Hox=VM-5V		100		mA
	IL_ON	Lix=1, Lox=0V		25		mA
	I_{L_OFF}	Lix=0, Lox=5V		50		mA
Undervoltage			1.3	1.8	2.2	V
Point						
Output Delay	T _{LR}	Low-side output rise		52		ns
	T_{LF}	Low-side output fall		36		ns
	T _{HR}	High-side output rise		75		ns
	T _{LF}	High-side output fall		50		ns

Test Conditions

Detailed Description

Power-on Shoot-through Protection: During power-on, especially during hotswapping operations, the gate voltage of the power transistor may couple to a high voltage due to the Miller capacitance (as shown in the left figure below). If the voltage exceeds the conduction voltage of the power transistor, it may cause a false conduction and damage the power transistor. The ZH6350A is designed with logic to prevent false conduction during power-on (as shown in the right figure below), ensuring that neither the chip nor the power transistor is damaged during rapid power-on.

Logic Shoot-through Protection: If LIx and Hix are both set to 1 simultaneously, all upper and lower outputs will be off to prevent shoot-through.

Adaptive Dead-time: The rise and fall times of the gate voltage may vary under different load power transistors, operating voltages, and operating temperatures.

Traditional fixed dead-time generation methods cannot adapt to these parameter changes. Under light load, excessive dead-time can waste space and cause output waveform distortion, while under heavy load, insufficient dead-time can cause shoot-through of the upper and lower transistors. The ZH6350A uses feedback-based adaptive dead-time control. During the turn-off process of the upper transistor, the driver chip continuously monitors the status of the upper transistor. Once turn-off is complete, it notifies the lower transistor, the driver chip continuously monitors the status of the upper transistor the status of the upper transistor. The ZH6350A uses feedback-based adaptive dead-time control. During the turn-off process of the upper transistor, the driver chip continuously monitors the status of the upper transistor. Once turn-off is complete, it notifies the lower transistor. Once turn-off is complete, it notifies the upper transistor's drive signal to turn on. This design minimizes dead-time width while ensuring safety.

Application Reference Circuit

• 🖸

2.B2

Input-Output Waveforms

LI1 - LO1 Input-Output Waveform:

Note: HO1 experimental waveforms were collected using an isolation probe, with one end of the probe connected to VM and the other end to HO.

1 = 2.00 V 2

Freq=-----= 2.50 V / 3 = 1.00 V / 4 = 2.00 V

MAX

0.2

0.

6.2 4.00

0.80

0.50 8* 10*

Package Dimensions

SOP-16

ŧ

1 E

QFN-16

SIDE VIEW

0.08

COMMON DIMENSIONS (UNITS OF MEASURE=MILLIMETER)

SYMBOL	MIN	NOM	MAX		
A	0.70	0.75	0.80		
A1	0.00	0.02	0.05		
A3		0.20REF			
b	0.20	0.25	0.30		
D	2.90	3.00	3.10		
E	2.90	3.00	3.10		
D2	1.80	1.90	2.00		
E2	1.80	1.90	2.00		
e	0.40	0.50	0.60		
К	0.15	0.25	0.35		
L	0.20	0.30	0.40		
R	0.10	-	-		

NOTES: ALL DIMENSIONS DO NOT INCLUDE MOLD FLASH OR PROTRUSION.

Revision History

Version	Modification Date	Modification Details	
V1.4	2024.06.13	Generates the English Version Datasheet.	