

高精度,高带宽,带参考电压输出可编程线性霍尔传感器

1. 产品特性

- 零点VQ不随电源电压变化
- 带参考电压输出(典型值 2.5V)
- 可编程高速线性霍尔传感器芯片
 - 静态输出电压可调
 - 参考电压可调
 - 灵敏度可调(1.0—18mV/Gs)
 - 灵敏度温度系数可调
- 响应时间低至 1.8μS
- 带宽最高240kHz
- 低噪声
- 工作电压范围 4.5-5.5V
- 工作温度范围 -40—125 ℃
- 电源欠压保护,输出短路保护
- 绿色 SIP4 封装

2. 典型应用

- 直流无刷电机电流检测
- 过电流检测
- AC/DC 变换器
- 位置检测
- 光伏电流传感器

3. 产品描述

3100 是一颗可编程线性霍尔传感器芯片,内部集成了磁场感应单元,三级可变增益低噪声放大器,输出级和温度检测,零点补偿, 灵敏度补偿和 EEPROM 控制模块。它感应垂直于芯片表面的磁场,并按一定比例(灵敏度)转化为电压输出,适合于电流检测应用。

3100 的静态输出电压(无磁场)默认为电源电压的一半,根据应用需求,可以通过电源和输出脚对静态电压进行在线编程。3100 的灵敏度范围可从 1-18mV/Gs 范围内编程以适应检测不同量程的电流。

3100 内部集成了温度传感器模块,用户通过改变温度 系数来补偿灵敏度随温度的变化,配合磁环的温度系数, 提高传感器精度。

芯片的典型工作电压为 5.0V,极限耐压可达 15V,工作温度范围支持-40-125°C,以满足恶劣的应用环境需求。

3100 提供 SIP-4 封装,亚光镀锡,采用无卤绿料,满足环保要求

图1. TO94封装示意图

目录

1. 产品特性 1	9. 工作参数6
2. 典型应用1	10. 功能框图8
3. 产品描述 1	11. 功能描述8
4. 引脚定义	12. 典型应用10
5. 订购信息	13. 传输函数11
6. 极限参数5	<i>14. 封装信息"</i> TO94(VB)"12
7. 静电保护 5	15. 历史版本13
0 ##### E	

4. 引脚定义

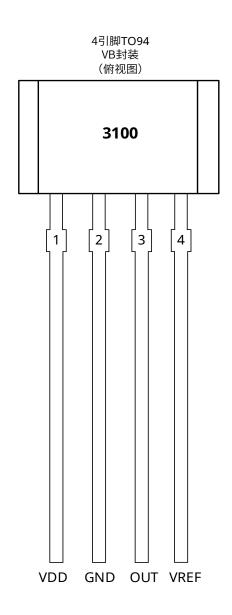
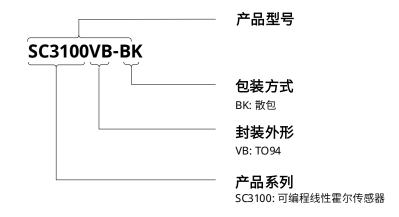


图 2. TO94 封装俯视图(右)

⇔		TO94
名称 描述		描述
VDD	1	4.5V~5.5V 电源供电
GND	2	地
OUT	3	输出端
VREF	4	典型值 2.5V


5. 订购信息

产品名称	灵敏度(mV/Gs)	工作温度(°C)	封装形式	包装形式	数量
SC3100VB-BK ⁽¹⁾	1.5~15	-40-125	TO94	散包	500 颗/袋

备注:

(1) BK: Bulk, 散装

订购信息格式说明

6. 极限参数

符号	参数	备注	最小值	最大值	单位
V_{DD}	正向电源电压	< 1 hours	0	15	٧
V_{RCC}	反向电源电压	< 1 hours	0	-0.5	V
V _{OUT}	正向输出电压	< 1 hours	0	15	V
V_{ROUT}	反向输出电压		0	-0.5	٧
I _{OUT(source)}	输出源电流	VOUT to GND	0	2.8	mA
$I_{\text{OUT(sink)}}$	输出灌电流	VDD to VOUT	0	8.8	mA
I _{OUT(source)}	VREF 脚电流源	VOUT to GND	0	0.5	mA
$I_{OUT(sink)}$	VREF 脚电流沉	VDD to VOUT	0	0.5	mA
	EEPROM 擦写次数		-	100	cycle
T _A	工作温度范围		-40	125	°C
T _{STG}	储存温度范围		-55	160	°C

备注:

以上列出的应力可能会对器件造成永久性的损害,长时间暴露在绝对最大额定值条件下可能会影响器件的可靠性。

7. 静电保护

符号	参数	最小值	最大值	单位
W	人体失效模型,参考 ANSI/ESDA/JEDEC JS-001 标准(HBM) ⁽¹⁾	-3	+3	KV
V_{ESD}	充放电失效模型,参考 ANSI/ESDA/JEDEC JS-002 标准(CDM) ⁽²⁾	-750	+750	٧

备注:

(1) JEDEC 文件 JEP155 指出,4000V HBM 允许使用标准 ESD 控制过程进行安全制造。

(2)JEDEC 文件JEP157 指出,750V CDM 允许使用标准 ESD 控制过程进行安全制造。

8. 热特性

符号	参数	测试条件	值 ⁽¹⁾	单位
$R_{ heta JA}$	TO94 封装形式热阻	单层 PCB,JEDEC 2s2p 和 1s0p 分别在 JESD 51-7 和 JESD 51-3 中定义	177	°C/W

备注:

(1)最大工作电压必须满足功耗和结温的要求,参照热特性

9. 工作参数

(工作电压 5V, 环境温度 25°C ,CBY=0.1Uf,另有说明除外)

符号	参数	测试条件	最小值	典型值	最大值	单位
电源端参数						
V_{DD}	电源电压		4.5	5	5.5	V
I_{DD}	电源电流		-	14	17	mA
t _{PO}	上电时间	C _{BYPASS} =Open, C _L =1nF, Sens= 2mV/G, B=400G	-	80	-	μs
V_{UVLOH}	6 C (D 1) + C	V _{DD} rising	-	3.8	-	V
V _{UVLOL}	一 欠压保护电压 	V _{DD} falling	-	3.2	-	V
V_{PORH}		V _{DD} rising	-	2.5	-	V
V_{PORL}	一 上电复位电压 	V _{DD} falling	-	2.2	-	V
Vz	齐纳二极管击穿电压	I _{DD} = 30mA	12	-	-	V
BW_i	带宽	signal -3dB C _L =1nF	-	240	-	kHz
f _C	斩波频率		-	1000	-	kHz
渝出端和参考 端	参数		1	ı	I.	l.
t _{RESPONSE}	响应时间	B _{step} =400G, Sens=2mV/G	-	1.8	-	μs
	-0.4		-	30	-	mVp-p
V_N	噪声 Ser	Sens=2mV/G, B _W f=B _{Wi}	-	1	-	mVRMS
V _{SAT(H)}	44.1.15.5.1.	R _{L(DOWN)} =5K to GND	4.6	-	-	V
$V_{SAT(L)}$	→ 输出饱和电压 	R _{L(UP)} =50K to VDD	-	-	0.4	V
R _{L(UP)}	输出负载电阻	V _{OUT} to V _{DD}	50	-	-	kΩ
R _{L(DOWN)}	输出负载电阻	V _{OUT} to GND	5			
C_L	输出负载电容	V _{OUT} to GND	-	1	10	nF
R_{ref}	参考端输出阻抗		-	150	270	Ω
R _{REF(UP)}		VREF to V _{DD}	20	-	-	kΩ
R _{REF(DOWN)}	→ 参考端负载电阻 	VREF to GND	20	-	-	kΩ
C_REF	参考端负载电容		-	100	470	nF
静态输出电压 V	/OUT(Q)和参考输出电压 VR	EF	1	ı	I.	l.
$V_{OUT(Q)init}$	出厂静态输出电压		2.4	2.5	2.6	V
$V_{\text{OUT(Q)PR}}$	静态输出电压编程范围		2.3	-	2.7	V
QVO	静态输出电压编程位数		-	8	-	bit
Step _{VOUT(Q)}	编程最小步进		0.8	1.6	2.4	mV
$V_{REF(Q)init}$	出厂参考端输出电压		2.45	-	2.55	٧
V _{REF(Q)PR}	参考输出电压编程范围		2.35	-	2.65	V
VREF	参考编程位数		-	9	-	bit
Step _{VREF}	→ 参考编程最小步进		0.3	0.6	0.9	mV

工作参数(续)

符号	参数	测试条件	最小值	典型值	最大值	单位
灵敏度 (SENS)			•			
		SENS_COARSE=00	-	1.5	-	mV/Gs
CENC		SENS_COARSE=01	-	3.2	-	mV/Gs
$SENS_{INIT}$	出厂默认灵敏度	SENS_COARSE=10	-	6.8	-	mV/Gs
		SENS_COARSE=11	-	14.1	-	mV/Gs
		SENS_COARSE=00	1.0	-	2.0	mV/Gs
CENIC	灵敏度编程范围	SENS_COARSE=01	2.0	-	4.0	mV/Gs
$SENS_{PR}$	· 灭	SENS_COARSE=10	4.0	-	8.5	mV/Gs
		SENS_COARSE=11	8.5	-	18.0	mV/Gs
SENS_COARSE	粗调位数		-	2	-	bit
SENS_ _{FINE}	细调位数		-	10	-	bit
灵敏度温漂			<u>.</u>			
ACENIC	目协会沿海	T _A =25 ~ 125 °C	-2.5	-	2.5	%
$\Delta SENS_{TC}$	灵敏度温漂	T _A =-40 ~ 25 °C	-2.5	-	2.5	%
静态电压温漂和氡	· 					
		T _A =25 ~125 °C	-25	-	25	mV
$\Delta V_{\text{OUT(Q)TC}}$	静态输出电压温漂	T _A =-40 ~ 25 °C	-25	-	25	mV
A) /	参考端温漂	T _A =25 ~ 125 °C	-25	-	25	mV
ΔV_{REFTC}		T _A =-40 ~ 25 °C	-25	-	25	mV
锁存位编程						
EELOCK	EEPROM 锁存位		-	1	-	bit
其他参数			•	•		
LIN _{ERR}	线性度		-1	±0.2	1	%
SYM_{ERR}	对称度		-1	±0.2	1	%
$\Delta SENS_{PKG}$	封装对灵敏度的影响	AFTER TEMPERATURE CYCLING	-1.5	0	1.5	%

10. 功能框图

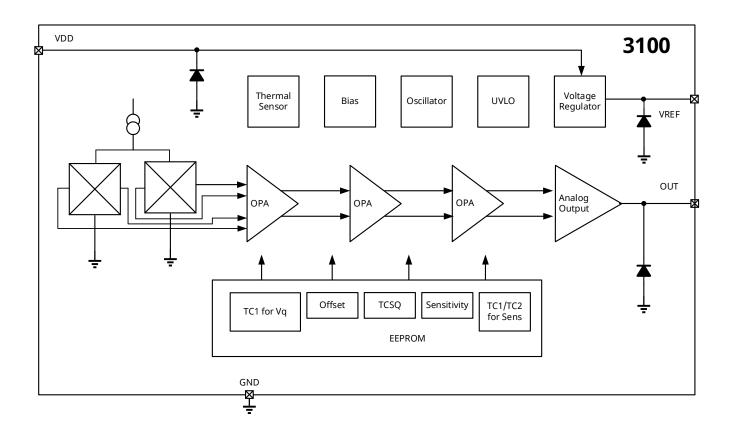


图 3. 功能框图概览

11. 功能描述

静态输出电压(V_{OUT(Q)}): "静态输出电压"指无磁场时芯片的输出电压。在无磁场时 3100 的输出电压理论上等于 2.5V,但由于芯片内部电路的失调电压,灵敏度,封装应力和其他因素的影响,静态输出电压与理论值有一定的偏差。在出厂时,通过编程可以使静态输出电压修调到理论值 ±5mV。静态输出电压有一定的温度系数,随着温度的变化,静态输出电压也会随着变化(灵敏度越高越明显),3100 内置温度传感器,可以对静态输出电压的温度系数进行修调。

参考电压(VREF):参考电压由电路内部稳压模块产生,其与电源电压无关,芯片出厂时 VREF 被修调为 2.5V。根据客户的需求,芯片可以通过编程器修改此参考电压。

灵敏度(S)

$$Sens = [VOUT(B1) - VOUT(B2)]/(B1 - B2)$$

当垂直于芯片丝印侧的 S 极磁场接近时,输出电压成比例增加,直到达到电源电压;相反,当垂直于芯片丝印侧的 N 极磁场接近时,输出电压成比例降低,直到达到地电平。灵敏度定义为输出电压变化和磁场变化的具体数值,一般以 mV/Gs 或 mV/mT 为单位。

芯片的灵敏度大小是可以根据实际需要进行在线编程的,编程的范围为 1.0-18 mV/Gs。通过编程,还可以对芯片的灵敏度温漂系数进行编程,以补偿芯片自身和不同的磁铁或磁环的温度系数。

上电时间 (t₂o)

上电时间定义为:在一定的磁场下,输入电源电压达到最低工作电压值(4.5V)与芯片输出电压达到目标值的 90%之间的时间。

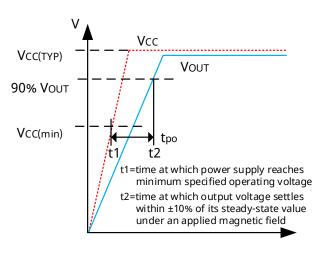


图 4. 上电时间定义

响应时间 (tresponse)

磁场达到目标值的 80%与芯片输出达到目标电压值的 80%之间的时间。响应时间与芯片的灵敏度(被测电流)大小和输出负载电容有关系。

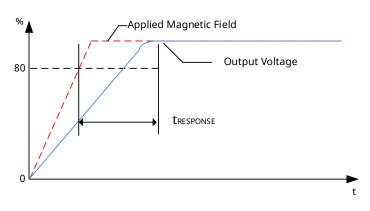


图 5. 响应时间

12. 典型应用

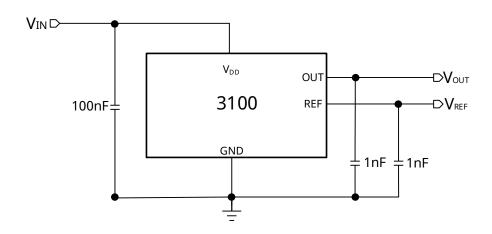
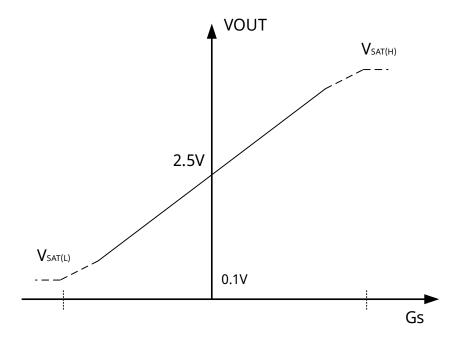
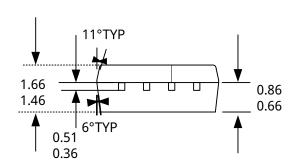
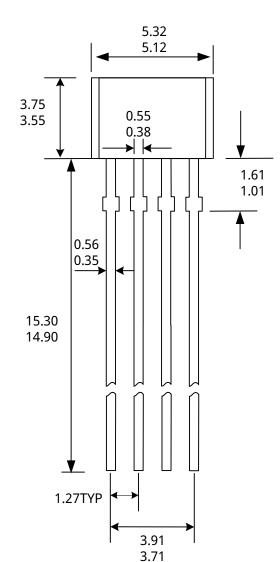


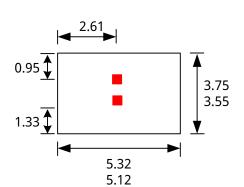
图 6. 典型应用线路图

13. 传输函数




图 7. 传输函数




14. 封装信息"TO94(VB)"

4-脚 VB-P 封装

单位:mm

注:

1.供应商可选的实际本体和管脚形状尺寸位于图示范围内。

2.高度不包括模具浇口溢料。

如果未指定公差,则尺寸为公称尺寸。

3.红色部件为霍尔板

15. 历史版本

版本	日期	描述
Rev.E0.1	2019-08-06	初始版本规格书
Rev.A1.0	2020-11-19	统一格式发布
Rev.A1.1	2022-03-16	修改封装尺寸
Rev.A1.2	2025-06-16	修改文件格式