

高精度、高带宽、可编程线性霍尔传感器

1. 产品特性

- AEC-O100认证产品
- 可编程线性霍尔传感器芯片
- 灵敏度(0.6—14 mV/Gs)
- 零点和灵敏度温度系数
- 响应时间低至8us
- 带宽120 kHz
- 低噪声
- 工作温度范围 -40—125 ℃
- 电源欠压保护,输出短路保护

2. 典型应用

- 电流检测
- 过流保护
- AC/DC 变换器
- 位置检测
- 角度检测

3. 产品描述

2100是一颗可编程线性霍尔传感器芯片,内部集成了磁场感应单元,三级可变增益低噪声放大器,输出级和温度检测,灵敏度补偿和 EEPROM 控制模块。它感应垂直于芯片表面的磁场,并按一定比例(与灵敏度有关)转化为电压输出,适合于电流、位置、角度等物理量的检测应用。

2100的静态输出电压(无磁场时输出值)默认为电源电压的一半。根据应用需求,可以通过电源和输出脚对静态电压进行在线编程。2100的灵敏度可调范围为 0.6—14 mV/Gs。

2100 内部集成了温度传感器模块,可以通过可编程算法 对集成电路的零点和灵敏度温度系数进行补偿,提高电 路测量精度。

芯片的典型工作电压为 5.0V,极限耐压可达 16V,工作温度范围支持-40—125℃,产品采用 SIP-3 塑封封装,采用无卤绿料,引脚采用亚光镀锡。

图1. TO92U封装示意图

目录

1. 产品特性 1	10. 功能框图7
2. 典型应用1	11. 功能描述7
3. 产品描述1	12. 典型应用9
4. 引脚定义	13. 传输函数9
5. 订购信息	<i>14. 封装信息 "</i> TO92U(2100)"10
6. 极限参数 4	15. 封装信息 "TO92U(2100S)"11
7. 静电保护 4	<i>16. 封装信息 "</i> TO92U(2100HBL)"12
8. 热特性 4	17. 历史版本13
9 丁作会数 5	

4. 引脚定义

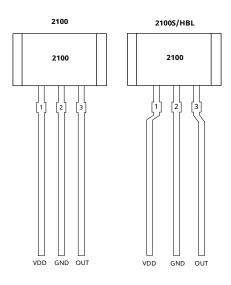


图 2. 引脚定义图

&7 1Jm	2100			
名称	c/s	类型	描述	
VDD	1	电源	4.5V~5.5V 电源供电	
GND	2	地	地	
OUT	3	输出	输出脚	

5. 订购信息

产品名称	灵敏度(mV/Gs)	工作温度(°C)	封装形式	包装形式	数量
2100	0.6-14	-40-125	TO92	散包	500 颗/袋
2100S	0.6-14	-40-125	TO92	散包	500 颗/袋
2100HBL	0.6-14	-40-125	TO92	散包	500 颗/袋

6. 极限参数

符号	参数	备注	最小值	最大值	单位
V_{DD}	正向电源电压		0	16	٧
V_{RCC}	反向电源电压		-16	0	٧
V _{OUT}	正向输出电压		0	16	٧
V_{ROUT}	反向输出电压		-0.3	0	٧
I _{OUT(source)}	输出源电流	V _{OUT} to GND	0	4	mA
$I_{OUT(sink)}$	输出灌电流	V _{DD} to V _{OUT}	0	50	mA
	EEPROM 擦写次数		-	100	cycle
T _A	工作温度范围		-40	125	°C
T _{STG}	储存温度范围		-65	160	°C

备注:

以上列出的应力可能会对器件造成永久性的损害,长时间暴露在绝对最大额定值条件下可能会影响器件的可靠性。

7. 静电保护

符号	参数	最小值	最大值	单位
V	人体失效模型,参考 AECQ100-002 标准(HBM)	-4	+4	KV
V _{ESD}	充放电失效模型,参考 AECQ100-011 标准(CDM)	-750	+750	V

8. 热特性

符号	参数	测试条件	值(1)	单位
$R_{ heta JA}$	TO92U 封装形式热阻	单层 PCB,1s0p JESD 51-3 中定义	166	°C/W

备注:

(1)最大工作电压必须满足功耗和结温的要求,参照热特性

9. 工作参数

(工作电压 5V, 环境温度 25°C ,C_{BY}=0.1uF,另有说明除外)

符号	参数	测试条件	最小值	典型值	最大值	单位
3源端参数						
V_{DD}	电源电压		4.5	5	5.5	V
I_{DD}	电源电流		-	13	16.5	mA
t _{PO}	上电时间	C _{BYPASS} =Open, C _L =1nF, Sens= 2mV/G, B=400G	-	78	-	μs
V _{UVLOH}	70 COLORED	V _{DD} rising	-	4.0	-	٧
V_{UVLOL}	· 欠压保护电压	V _{DD} falling	-	3.6	-	V
V_{PORH}	- 上电复位电压	V _{DD} rising	-	2.6	-	V
V_{PORL}		V _{DD} falling	-	2.3	-	٧
Vz	齐纳二极管击穿电压	I _{DD} = 30mA	15	-	-	٧
BWi	带宽		-	120	-	kHz
f_{C}	斩波频率		-	500	-	kHz
からない かっぱい かいりょう いいりょう かいりょう いいりょう かいりょう いいりょう いいり いいりょう いいりょく いいり いいり いいりょく いいりょく いいりょく いいりょく いいりょく いいりょく いいりょく いいりょく いいりょく いいり いいり いいり いいり いいり いいり いいり いいり いいり いい			•			
t _{RESPONSE}	响应时间	B _{step} =400G, C _L =1nF, Sens=2 mV/G	-	4	8	μs
.,	np ±		-	10	-	mV _p
V_N	噪声 	C _L =1nF, Sens=2 mV/G, B _{Wf} =B _{Wi}	-	1	-	mV _{RN}
t _R	上升时间	B _{step} =400G, C _L =1nF, Sens=2 mV/G	-	3.6	-	μs
$V_{\text{CLP(H)}}$	松山纽	R _{L(DOWN)} =10K to GND	4.5	4.7	4.85	V
$V_{\text{CLP(L)}}$	· 输出钳位电压	R _{L(UP)} =10K to VDD	0.15	0.3	0.45	V
V _{SAT(H)}	to United In	R _{L(DOWN)} =10K to GND	4.7	-	-	V
$V_{\text{SAT(L)}}$	输出饱和电压	R _{L(UP)} =10K to VDD	-	-	0.3	V
R _{L(UP)}	to 11.7. 盐中四	V _{OUT} to VDD	4.7	-	-	kΩ
R _{L(DOWN)}	- 输出负载电阻 	V _{OUT} to GND	4.7	-	-	kΩ
C_L	输出负载电容	Sens=2 mV/G, C _L =1nF	-	1	10	nF
SR	输出摆率	Sens=2 mV/G, C _L =1nF	-	400	-	V/m
多态输出电压	VOUT(Q)		•	•	•	
$V_{\text{OUT(Q)init}}$	出厂静态输出电压		2.4	2.5	2.6	V
$V_{\text{OUT(Q)PR}}$	静态输出电压编程范围		2.3	-	2.7	٧
Q _{vo}	编程位数		-	9	-	bit
Step _{vour(Q)}	编程最小步进		0.6	1.2	1.8	m۷

高精度、高带宽、可编程线性霍尔传感器

灵敏度 (Sens)			1	T	_
Conc		SENS_COARSE = 00	-	1	-	mV/Gs
	出厂默认灵敏度	SENS_COARSE =01	-	2	-	mV/Gs
Sens _{init}	山/ 私外火蚁反	SENS_COARSE =10	-	4.5	-	mV/Gs
		SENS_COARSE =11	-	10	-	mV/Gs
		SENS_COARSE =00	0.6	-	1.4	mV/Gs
Cons	灵敏度编程范围	SENS_COARSE =01	1.0	-	3.0	mV/Gs
Sens _{PR}	火蚁, 長	SENS_COARSE =10	2.0	-	7.0	mV/Gs
		SENS_COARSE =11	4.5	-	14	mV/Gs
SENS_COARSE	粗调位数		-	2	-	bit
SENS_FINE	细调位数		-	9	-	bit
灵敏度温漂						
TC _{SENS}	灵敏度温漂系数	T_A =-40°C ~ 150°C, calculated relative to 25 °	-	0	-	%/°C
^ C	电影应用证明	T _A =25°C ~ 150 °C	-2.5	-	2.5	%
\triangle Sens _{TC}	灵敏度温漂范围	T _A =-40°C to 25 °C	-2.5	-	2.5	%
	灵敏度温漂一阶补偿位数		-	6	-	bit
Step _{SENSTC}	平均温漂编程步进		-	-	0.3	%
静态电压温漂			•		•	
TC_{QVO}	静态输出电压温漂	T_A =-40°C ~ 150°C, calculated relative to 25 °C	-	0	-	mV/°C
A) (OLIT	***	T _A =25°C ~ 150 °C	-10	-	10	mV
$\Delta VOUT_{(Q)TC}$	静态输出电压范围	T _A =-40°C ~ 25 °C	-10	-	10	mV
	温度补偿编程位数		-	30	-	bit
Step _{QVOTC}	平均温漂编程步进		-	1.2	-	mV
锁位编程			•		•	
EELOCK	EEPROM 锁定位		-	1	-	bit
其他参数			.	•	•	
Lin _{ERR}	线性度		-1	±0.2	1	%
Sym _{err}	对称度		-1	±0.2	1	%
Rat _{ERRVQ}	静态输出电压随电压范围变化	Through supply voltage range	-1	0	1	%
Rat _{ERRSens}	灵敏度精度随电压范围变化	Through supply voltage range	-1.5	±0.5	1.5	%
$\Delta Sens_{PKG}$	封装对灵敏度的影响	After temperature cycling	-1.25	0	1.25	%

10. 功能框图

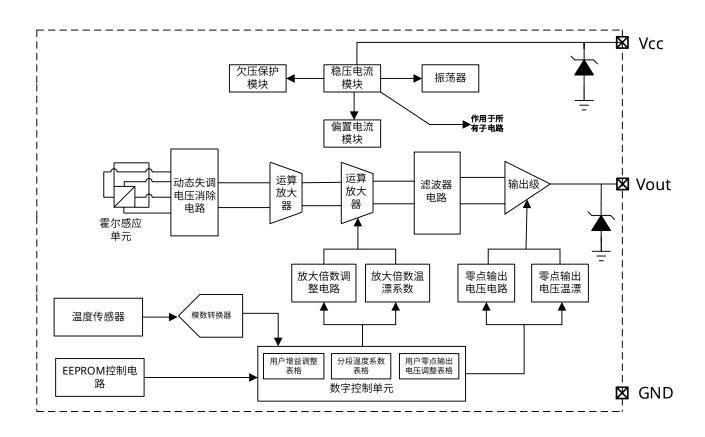


图 3. 功能框图概览

11. 功能描述

静态输出电压(V_{ουτ(Q)}):静态输出电压是指在无磁场时(B=0Gs),芯片的输出电压。在无磁场时 2100 的输出电压理论 上等于 VDD/2,但由于芯片内部电路的失调电压,灵敏度,封装应力和其他因素的影响,静态输出电压与理论值有一定 的偏差。静态输出电压有一定的温度系数,随着温度的变化,静态输出电压也会随着变化(灵敏度越高越明显)。

灵敏度(S)

$$Sens = [VOUT(B1) - VOUT(B2)]/(B1 - B2)$$

当垂直于芯片丝印侧的 S 极磁场接近时,输出电压成比例增加,直到达到电源电压;相反,当垂直于芯片丝印侧的 N 极磁场接近时,输出电压成比例降低,直到达到地电平。灵敏度定义为输出电压变化和磁场变化的具体数值,一般以 mV/Gs 或 mV/mT 为单位。

芯片的灵敏度大小是可以根据实际需要进行在线编程的,编程的范围为 0.6—14mV/Gs。通过编程,还可以对芯片的灵敏度温漂系数进行编程,以补偿芯片自身和不同的磁铁或磁环的温度系数。

上电时间(tpo)

上电时间定义为:在一定的磁场下,输入电源电压达到最低工作电压值(4.5V)与芯片输出电压达到目标值的 90%之间的时间。

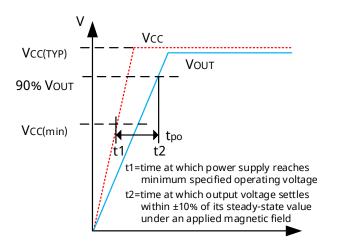


图 4. 上电时间定义

响应时间 (t_{RESPONSE})

磁场达到目标值的 80%与芯片输出达到目标电压值的 80%之间的时间。响应时间与芯片的灵敏度(被测电流)大小和输出负载电容有关系。

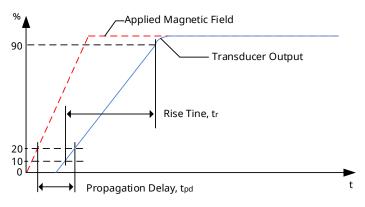


图 5. 传播延迟和上升时间定义

12. 典型应用

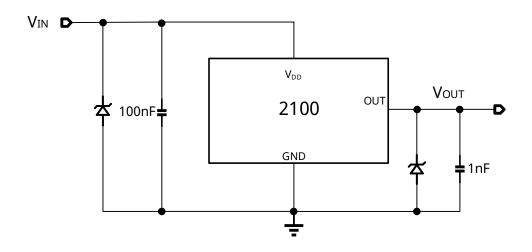


图 6. TO92 典型应用线路图

13. 传输函数

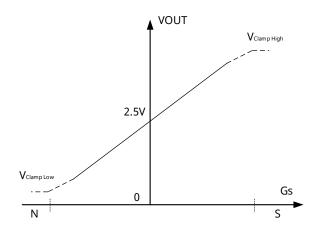
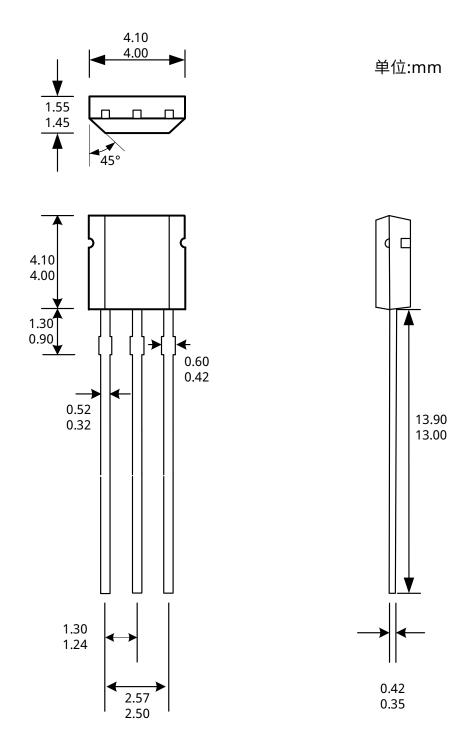
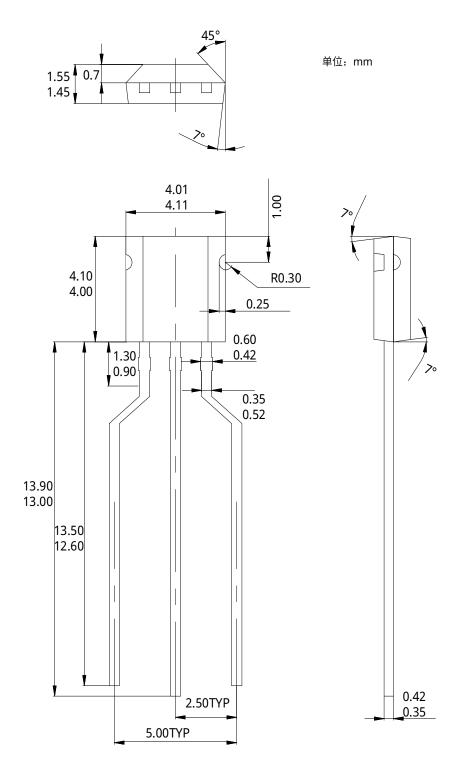
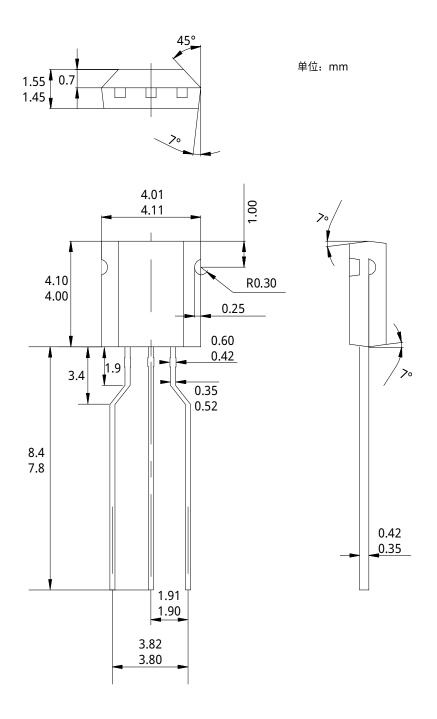



图 7. 传输函数


14. 封装信息 "TO92U(2100)"

注: 1.供应商可选的实际本体和管脚形状尺寸位于图示范围内。 2.高度不包括模具浇口溢料。 如果未指定公差,则尺寸为公称尺寸。


15. 封装信息 "TO92U(2100S)"

注: 1.供应商可选的实际本体和管脚形状尺寸位于图示范围内。 2.高度不包括模具浇口溢料。 如果未指定公差,则尺寸为公称尺寸。

16. 封装信息 "TO92U(2100HBL)"

注:

- 1.供应商可选的实际本体和管脚形状尺寸位于图示范围内。

2.高度不包括模具浇口溢料。 如果未指定公差,则尺寸为公称尺寸。

17. 历史版本

版本	日期	描述
Rev.A1.0	2021-11-19	初始版本
Rev.A1.1	2022-09-08	统一规格书格式
Rev.A1.2	2023-04-10	更改 00 档灵敏度范围、响应时间;添加 2100S 封装信息;修改原 2100 为 2100C
Rev.A1.3	2023-08-10	更新规格书格式
Rev.A1.4	2025-06-20	更新规格书格式