

高性能数字单极霍尔效应传感器

1. 产品特性

- AEC-Q100 汽车级认证
- 高性能单极开关霍尔
- 多种灵敏度范围可选
- 高斩波频率
- 宽工作电压范围: 2.5V 到 24V
- 宽工作温度范围: -40℃到 150℃
- 电源反接保护: -28V
- 所有脚均有过电保护
- 小封装
 - 3 脚 SOT23-3L(SO)

2. 产品应用

- 换挡器开关
- 液晶屏/门把手/油箱盖/行李箱开关
- 离合器/刹车灯开关
- 雨刮器行程位置开关
- 行程终点以及指示开关

3. 产品描述

SC243X 系列采用高频斩波技术,在全工作电压和工作温度范围内具有很高的磁场一致性和对称性。芯片的电源和输出脚集成了过压保护功能,具有抗电磁干扰(EMC)能力强和可靠性高的特点。

SC243X内部集成了稳压模块、霍尔阵列、放大电路、施密特触发器和输出级等电路模块。霍尔信号处理通路采用高频斩波技术,不但减小了霍尔感应阵列和处理电路的失调电压,而且减小了应力和温度对失调电压的影响,并尽可能地将芯片的系统延时及输出抖动降低至最小。SC243X的输出级采用漏极开路输出,并有能达到 20mA 的灌电流能力。

SC243X 内部集成的稳压电路使芯片可接受 2.5V 到 24V 的宽电源供电电压,满足工业和汽车电子的应用需求。

SC243X 使用 3 脚 SOT23-3L 封装(SO)。100%无铅亚光镀锡引线封装。

SOT23-3L

图 1 封装外形图

目录

1. 产品特性1	1
2. 产品应用	1
3. 产品描述	1
4. 引脚描述	3
5. 订购信息	1
6. 极限参数5	5
7.静电保护5	5
8.热特性5	5
9. 工作参数6	5
9.1. 电参数6	5
9.2 磁会数	7

10. 特性曲线	7
11. 功能框图	9
12. 功能描述	9
12.1. 磁场方向定义	10
12.2. 传输函数	10
13. 典型应用	11
14. 封装信息 SO	12
15 历史版本	1:

4. 引脚描述

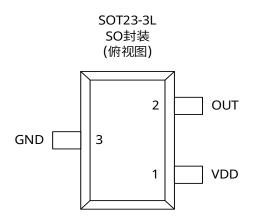
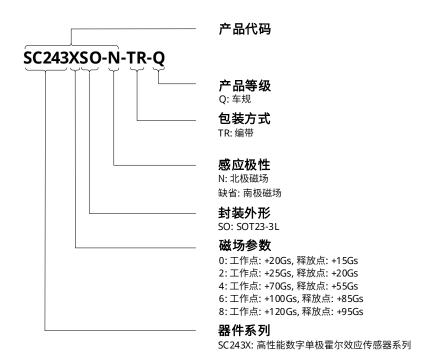


图 2 引脚定义图


引	脚	******	描述
名称	so	类型	佃近
VDD	1	电源	工作电压 2.5V 到 24V
GND	3	地	接地
OUT	2	输出	漏极开路输出,使用时需外接上拉电阻

5. 订购信息

产品代码	丝印	感应极性	工作点(Gs)	释放点(Gs)	工作温度(°C)	封装外形	包装方式	数量
SC2430SO-TR-Q	2430	S	+20	+15	-40~150	SOT23-3L	编带	3000/盘
SC2432SO-TR-Q	2432	S	+25	+20	-40~150	SOT23-3L	编带	3000/盘
SC2432SO-N-TR-Q	2432	N	-25	-20	-40~150	SOT23-3L	编带	3000/盘
SC2434SO-TR-Q	2434	S	+70	+55	-40~150	SOT23-3L	编带	3000/盘
SC2434SO-N-TR-Q	2434	N	-70	-55	-40~150	SOT23-3L	编带	3000/盘
SC2436SO-TR-Q	2436	S	+100	+85	-40~150	SOT23-3L	编带	3000/盘
SC2438SO-TR-Q	2438	S	+120	+95	-40~150	SOT23-3L	编带	3000/盘

订购信息格式说明

6. 极限参数

工作温度范围内 (除非另有说明)(1)

符号	参数	测试条件	最小值	最大值	单位
V_{DD}	电源端耐压		-28	28	٧
V _{OUT}	输出端耐压	1.2K 欧姆上拉电阻,不超过 5 分钟	-0.5	28	٧
I _{SINK}	输出灌电流		0	30	mA
T _A	工作温度		-40	150	°C
T _J	最大结温		-55	165	°C
T _{STG}	储藏温度		-65	175	°C

备注:

(1)高于此处列出的压力可能会导致器件永久损坏,长时间暴露在绝对最大额定值条件下可能会影响器件的可靠性

7.静电保护

符号	参数	测试条件	最小值	最大值	单位
V _{ESD_HBM}	нвм	人体模型(HBM)测试按照 AEC-Q100-002 标准	-4	+4	kV
V _{ESD_CDM}	CDM	充电器件模型(CDM)测试按照 AEC-Q100-011 标准	-1	+1	kV

8.热特性

符号	参数	测试条件	值	单位
R _{⊝ja}	SO 封装热阻	单层 PCB,JEDEC 2s2p 和 1s0p 分别在 JESD 51-7 和 JESD 51-3 中定义	300 ⁽¹⁾	°C/W

备注:

(1)最大工作电压必须满足功耗和结温的要求,参照热特性

9. 工作参数

9.1. 电参数

工作温度范围内, $V_{DD} = 5.0V$ (除非另有说明)

符号	参数	测试条件	最小值	典型值(1)	最大值	单位
V_{DD}	工作电压(2)	$T_{J} < T_{J(Max.)}$	2.5	5.0	24	V
I_{DD}	工作电流	V _{DD} =2.5V to 24V, T _A =25°C	-	1.6	2.5	mA
t _{on}	上电时间		1	35	50	μs
I_{QL}	漏电流	Output Hi-Z	-	-	3	μΑ
D.	ret Dischin	I ₀ =10mA, T _A =25°C	1	20	ı	Ω
R _{DS(on)}	FET 导通电阻	I ₀ =10mA, T _A =125°C	-	30		Ω
t _d	输出延迟时间	B=B _{RP} to B _{OP}	-	15	25	μs
t _r	输出上升时间(10% to 90%)	R_L =1KΩ, Co=50pF	1	-	0.5	μs
t _f	输出下降时间(90% to 10%)	R _L =1KΩ, Co=50pF	-	-	0.2	μs

备注:

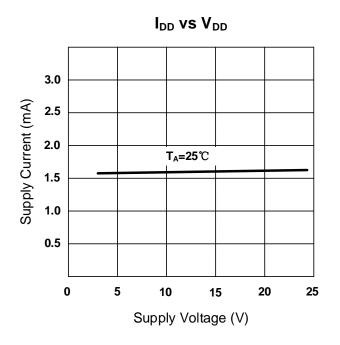
(1)环境温度+25℃,VDD=5V条件下的测试值为典型值

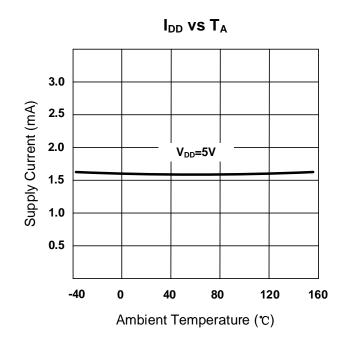
(2)必须调整最大电压的功耗和结温,见热特性

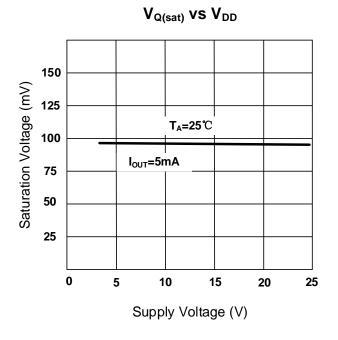
9.2. 磁参数

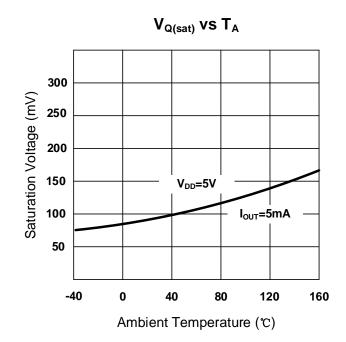
工作温度范围内, V_{DD} = 5.0V (除非另有说明)

符号	参数	测试条件	最小值	典型值	最大值	单位		
f_{BW}	带宽		20	-	-	kHz		
SC2430 +	SC2430 +2.0 ⁽¹⁾ /+1.5 mT ⁽²⁾							
B _{OP}	磁场开启点		+1.5	+2.0	+3.5	mT		
B_RP	磁场关闭点	T _A =25°C	+1.0	+1.5	+2.0	mT		
B _{HYS}	迟滞		-	0.5	-	mT		
SC2432 +	+2.5 /+2.0 mT							
B _{OP}	磁场开启点		+1.5	+2.5	+3.5	mT		
B_RP	磁场关闭点	T _A =25°C	+1.0	+2.0	+3.0	mT		
B _{HYS}	迟滞		-	0.5	-	mT		
SC2434 +	+7.0 /+5.5 mT							
B _{OP}	磁场开启点		+6.0	+7.0	+8.0	mT		
B _{RP}	磁场关闭点	T _A =25°C	+4.5	+5.5	+6.5	mT		
B _{HYS}	迟滞		-	1.5	-	mT		
SC2436 +	+10.0/+8.5 mT							
Вор	磁场开启点		+9.5	+10.0	+10.5	mT		
B _{RP}	磁场关闭点	T _A =25°C	+8.0	+8.5	+9.0	mT		
B _{HYS}	迟滞		-	1.5	-	mT		
SC2438 +	+12.0 /+9.5 mT							
Bop	磁场开启点		+10.0	+12.0	+14.0	mT		
B_RP	磁场关闭点	T _A =25°C	+7.5	+9.5	+11.5	mT		
B _{HYS}	迟滞		-	2.5	-	mT		


备注:


(1)磁感应强度 B,北极性磁场为负值,南极性磁场为正值


(2)1mT=10Gs



10. 特性曲线

11. 功能框图

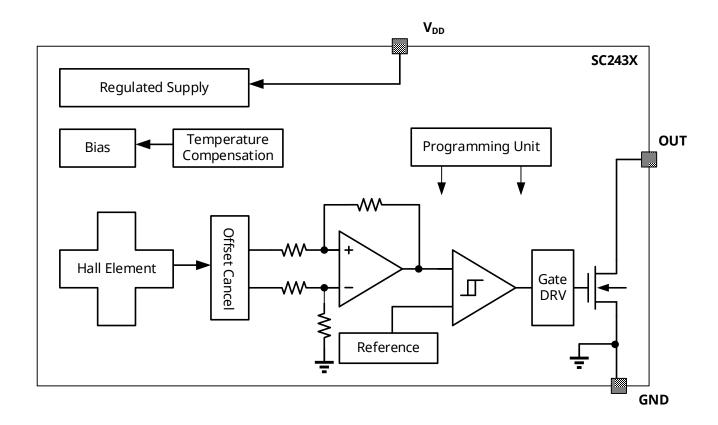


图 3 模块功能框图

12. 功能描述

SC243X 是一款单极型霍尔效应传感器, 斩波技术的运用, 芯片具有稳定的翻转点, 主要用于磁感应的应用中。 能够在 2.5V 到 24V 的电压下正常工作, 并且能在-28V 的反接的情况下不损坏。

SC243X 在一个垂直于霍尔元件的磁场增加至工作点 B_{OP} 时输出低电平(开启)。在开启状态,输出端可灌 20mA 的电流,输出电压是 $V_{Q(SAT)}$ 。当磁场减弱至释放点 B_{RP} 时,输出高电平(关断)。磁场开启点与关闭点中间的差就是翻转点的迟滞。这个内建的迟滞能够让芯片在外部机械干扰和噪声下都能正常工作。

在输出终端上需要外接一个上拉电阻。输出端可以被拉高到 V_{DD} 或者一个其他的电压值,与控制电路的连接更加容易。

12.1. 磁场方向定义

磁场S极正对芯片丝印面定义为正磁场。

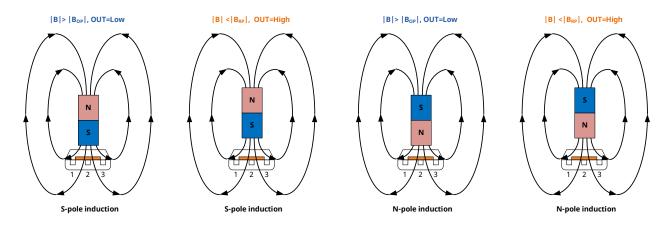


图 4 磁场方向定义图

12.2. 传输函数

在迟滞区通电,小于 B_{OP} ,大于 B_{RP} ,允许不确定的输出状态。在第一次超出 B_{OP} 或 B_{RP} 之后,就可以达到正确的状态。如果电场强度大于 B_{OP} ,则输出被拉低。如果电场强度小于 B_{RP} ,输出被释放。

Bop—磁阈值的激活设备输出,开启(低电平)状态。

BRP—磁阈值释放设备输出,关断(高电平)状态。

 $B_{HYS} = B_{OP} - B_{RP_{\circ}}$

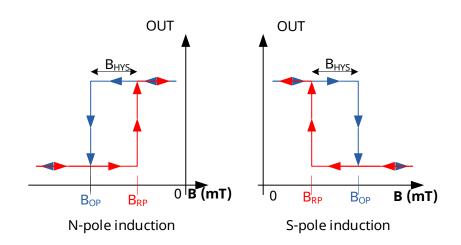


图 5 传输曲线图

13. 典型应用

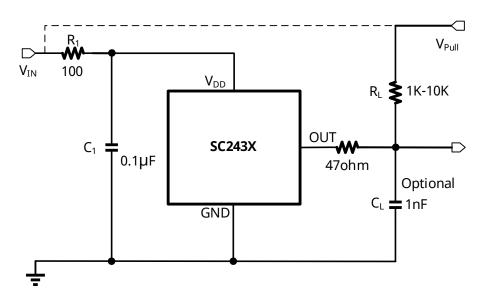


图 6 典型应用线路图

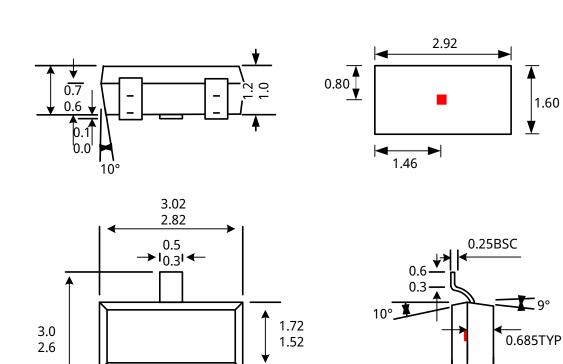
SC243X 内部有电压调节器,可以在宽供电电压范围内工作。当器件工作于非稳压电源供电的应用时,必须在外部添加瞬态保护。对于使用稳压电源线路供电的应用,可能仍然需要 EMI/RFI 保护。强烈建议电源端与接地端使用外接电容,可降低外部噪声及内部斩波频率技术产生的噪声,建议靠近芯片 V_{DD} 电源端并联 C_1 电容到地,其典型值为 0.1μ F。同时在外部可选配串联电阻 R_1 其典型值为 100Ω 。输出电容 C_L 用作输出滤波,典型值为 1π F。

根据系统带宽规范选择一个 CL 值:

$$C_L < \frac{1}{2\pi \times R_L \times 2 \times f_{BW}(Hz)}$$

SC243X 器件的输出级是一个漏极开路 NMOS 管,可提供 20mA 的负载能力。调节上拉电阻 R_L 的值使得其正常工作。 R_L 为开漏输出提供一个高电平。通常情况电流越小越好,但是更快的瞬态响应和带宽需要,接更小的电阻 R_L 以实现更快的切换。

V_{PULL} 不限于 V_{DD},可以连接到其他参考电压。该引脚的允许电压范围在极限参数中规定。



14. 封装信息 SO

3-脚 SO封装

单位: mm

0.20 0.10

备注:

- (1)供应商可选的实际本体和管脚形状尺寸位于图示范围内
- (2)高度不包括模具浇口溢料

0.95

2.00 1.80

如果未指定公差,则尺寸为公称尺寸

15. 历史版本

版本号	日期	修改说明
Rev.1.0	2016-05-10	初始版本
Rev.1.1	2017-08-06	增加 SC2438SO 订货信息
Rev.1.2	2019-05-06	旧版本规格书最终版本号
Rev.A1.0	2021-01-04	统一格式发布
Rev.A1.1	2024-05-06	更新订货信息中的产品型号
Rev.A1.2	2024-07-19	更正 SC2438 磁场参数
Rev.A1.3	2024-11-28	更新订货信息
Rev.A1.4	2025-08-06	统一车规产品规格书格式