

ZH6551 单相 BLDC 风扇水泵驱动器(外置 MOS)

特点:

产品应用:

- 单相风扇驱动器, 可选内置或外置霍尔 单相 BLDC 风扇
- 3V~28V 供电,集成了 PNmos 的预驱 单相 BLDC 水泵
- 低电流待机模式<10uA
- 可配置超前角, 优化效率
- 可配置的速度曲线
- 可配置的输出波形
- 可选速度闭环
- 可选 FG/RD 诊断输出
- PWM 输入频率 50Hz 至 100kHz
- 限流功能
- 短路保护,过温,过压,欠压保护

引脚图和引脚说明

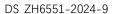
引脚	序号	符号	1/0	功能说明	
		3	GND	Р	电源输入负
NC O	PWM	4	FG/RD	0	速度诊断输出
NC	LO2	5	V5	Р	Hall 供电
GND	HO2	6	VM	Р	电源输入正
FG	O2 O1	9	HALL	1	可选的Hall输入
VM M	HO1	10	LO1	0	低边输出1
NC NC	LO1	11	HO1	0	高边输出1
NC	HALL	12	01	1	功率输出反馈
TCCOD16/7	ZUGEE1EC)	13	O2	1	功率输出反馈
TSSOP16(Z	-H0331EC)	14	HO2	0	高边输出 2
		15	LO2	0	低边输出 2
		16	PWM	1	速度给定

绝对最大额定值

参数	符号	值	单位
电源电压	VM	30	V
高边驱动电压	НО	VM-6	V
低边驱动电压	LO	6	V
相电压	OUT1, OUT2	VM+1	V
VDD 输出	V5	6	V
逻辑输入	PWM, HALL	6	V
逻辑输出	FG	VM	V
工作温度	Toperation	-40~125	℃

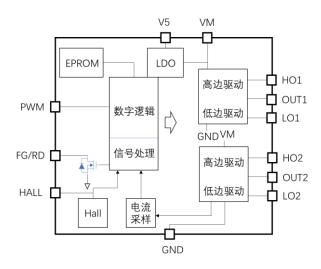
推荐工作条件

参数	符号	最小值	最大值	单位
电源电压	VM	3	28	V
输出电压	OUTx	GND-1	VM+1	V
高边驱动电压	НО	VM-6	VM	V
低边驱动电压	LO	0	6	V
VDD 电压	V5	4	6	V
HALL 输入电压	VHALL	0	6	V
PWM 输入电压	V _{PWM}	0	5	V
控制输出电压	V _{FG}	0	VM	V
输出电流	Гоит	-0.8	0.8	А
霍尔信号峰值	Bpeak	50	500	Gs


电气特性

(TA=25°C,VM=24V)

参数 符号 测试条件	最 小	典 型	最大	单位
------------	-----	-----	----	----


	owermicro		1		D3_Z1100	001-2024-9
			值	值	值	
待机电流	Istandby	PWM=0		8.4	30	uA
工作电流	Icc	PWM=1,空载		3.5		mA
V5 电压	V _{V5}			5		V
V5 电流	I _{V5}				5	mA
PWM 输入	VIH			3.0		V
	V _{IL}			1.5		V
输出阻抗	Rон	高边 off, GHx=VM-0.2V		3		Ω
	Rol	低边 off,GLx=0.2V		2		Ω
强关阈值	V _{STRONG_H}	VM-GH _x		1.1		V
	V _{STRONG_L}	GLx-GND		1.1		V
驱动电流	I _{H_ON}	高边 on,GHx=VM		100		mA
	I _{H_OFF}	高边 off,GHx=VM-5V		100		mA
	I _{L_ON}	低边 on,Lox=0V		25		mA
	I _{L_OFF}	低边 off,Lox=5V		50		mA
霍尔运放	Gain			1.2		mV/Gs
比较器失	offset	霍尔比较器	-3		3	Gs
调		电流比较器	-5		5	mA
振荡器精	Osc	25℃	-1.5		1.5	%
度		-40~150°C	-2.5		2.5	%
FG 输出		限流		10		mA
		3mA			0.35	V
		漏电			1	uA
过压保护	OVP0	OVP_SET=00		28		V
	OVP1	OVP_SET=01		24		V
	OVP2	OVP_SET=10		20		V
	OVP3	OVP_SET=11		18		V
过压保护	HYS _{OVP}			1		V
迟滞电压						
上电释放	POR_U			3. 2		V
点						
上电复位	POR_D			3. 0		V
点						
过流保护		High side		0.3		V
点		Low side		0.3		V

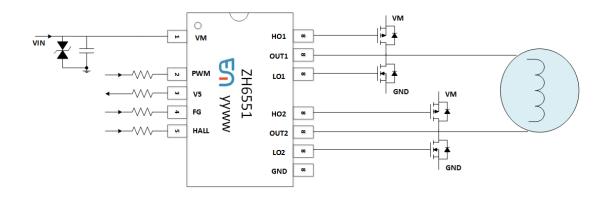
过温保护	T _{PRO}	135	150	170	$^{\circ}$
过温迟滞	$T_{\text{PRO_hys}}$		20		$^{\circ}$ C

系统框图

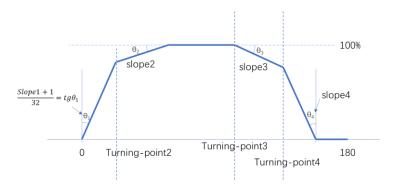
详细描述

ZH6551 是一款单相直流无刷电机的驱动芯片,内置了霍尔传感器, H 桥预驱,软换向和软启动控制,限流,短路,过压,过温,欠压等保护功能。芯片支持 PWM 调速 (PWM 调速可选速度闭环模式),可配置的速度曲线,FG 输出反馈功能。

用户可选择内置 HALL 传感器, 或者外置开关型 HALL 传感器, 从 HALL 引脚输入。HALL 的供电请使用 V5。

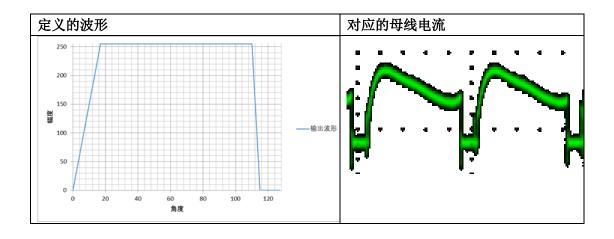

ZH6551 具有休眠模式, 在 PWM=0 后, 休眠电流小于 10uA。

PWM 脚: 输入信号频率范围 50Hz~100KHz, 芯片通过读取 PWM 输入占空比调速。


FG: 输出采用开漏输出,用来反馈当前速度情况。输出一个电流周期,FG 对应输出一个周期信号。

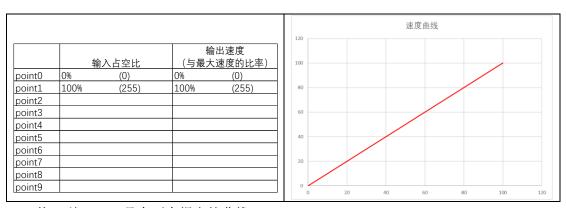
应用参考电路

波形曲线

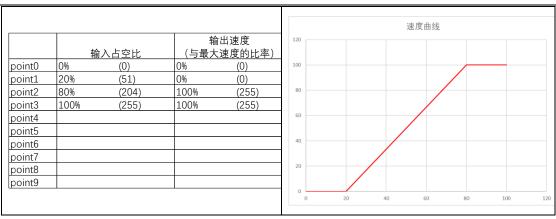

ZH6521 的输出波形曲线可以通过7个参数配置。

其中 Slope 满足右边方程: $\frac{Slope_n+1}{32} = tg\theta_n$

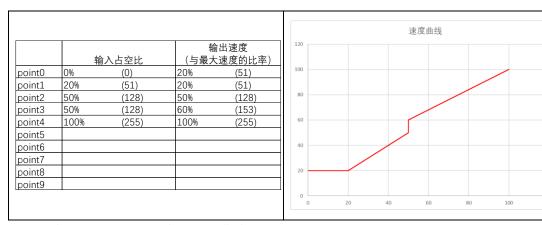
- 第一个拐点为0度,无需配置。
- 第一段斜率 slope1,正比于角度 θ₁的正切值。最大 45 度 (对应 slope1=31),意味着幅度从 0 到 100% 需要 45 度电角度。其配置角度范围 0 到 45 度,32 个档位。
- 第二个拐点为 Turning-point2, 范围是 0 度到 90 度。
- 第二段斜率 slope2,正比于角度 θ_2 的正切值。最大 45 度(对应 slope2=31)。配置数值越大,上升斜率越大。
- 第三个拐点为 Tuning-point3, 范围是 90 度到 180 度。
- 第三段斜率 slope3,是下降斜率,配置数值越大,下降斜率越大。
- 第四个拐点为 Tuning-point4, 范围是 90 度到 180 度。


- 第四段斜率 slope4,是下降斜率,正比于角度 θ₄的正切值。与 slope1 配置方法相同。
- 第四段降到零后,到换向之前,将被设定为零电压。

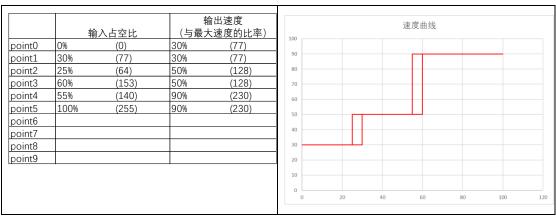
速度曲线


速度曲线将由 10 个寄存器(16 位)进行配置。每个寄存器低 8 位记录占空比,高 8 位记录目标速度(占最高目标速度的比例)。客户将最多不超过 10 对数据写入表格中。每一对数据表示一个拐点的横坐标(占空比)和纵坐标(目标速度)。速度曲线将有这 10 个点的数据确定。举例如下:

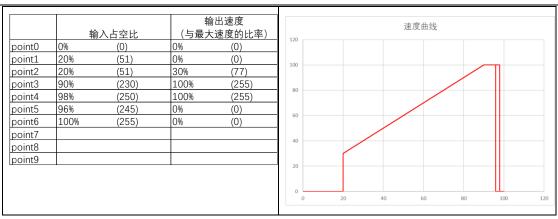
● 从0到100%的线性曲线(这个是默认曲线,如需此曲线,只需设定"不查表")



● 从0到100%,具有两个拐点的曲线:



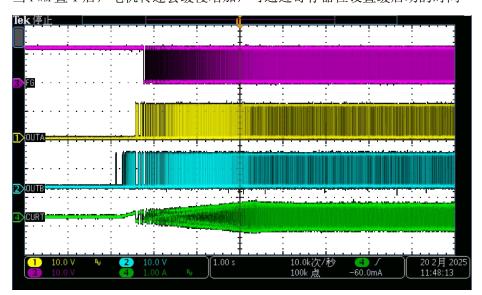
● 起始速度不为零,且跳过共振点的曲线:



● 具有三挡调速,且具有迟滞的曲线:

● 100%占空比时速度为0的曲线:

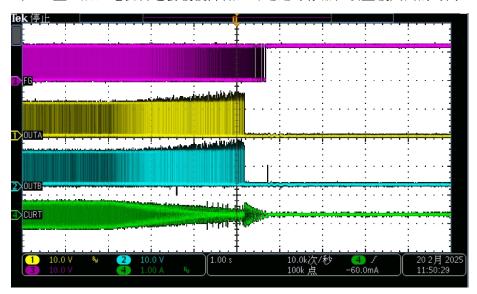
PWM 斜波


外部 PWM 占空比调节不会马上作用到输出,而是内部有个 PWM 斜波控制,实际输出电压根据 PWM 斜波的值来输出,可以实现缓慢启动和缓慢关闭的功能。

上升斜波的步进时间由 acc_time_set 设置,下降斜波的步进时间由 dec_time_set 设置。

电机转速缓启动效果

当 PWM 置 1 后, 电机转速会缓慢增加, 可通过寄存器位设置缓启动的时间



CH3:FG 信号, CH1:OUTA 相电压输出, CH2:OUTB 相电压输出, CH4:相电流

电机转速缓关闭效果

当 PWM 置 0 后, 电机转速会缓慢降低, 可通过寄存器位设置缓关闭的时间。

CH3:FG 信号, CH1:OUTA 相电压输出, CH2:OUTB 相电压输出, CH4:相电流

顺风启动

顺风启动策略是将电机转速降到设置的最低转速后,再启动电机。防止高速运行时启动电机,电机的反电动势能量回馈到电源上,使电源冲的很高,减少对耐压器件的高压冲击。

如果转速过高,可以刹车到最低转速或者溜车到最低转速。最低转速设置由 speed low set 寄存器设置。

如果转速低于最低转速,直接启动电机。

有如下启动策略可以设置:

windmill_check_disable=0	启动前检测转速是否低于最低转速?
always_do_brake_before_start=0	是则延时一段最低转速时间,然后启动电机,
brake_before_start=0	不是则溜车到最低转速时间,然后启动电机。
windmill_check_disable=0	启动前检测转速是否低于最低转速?
always_do_brake_before_start=1	是则刹车一段最低转速时间,然后启动电机,
brake_before_start=0	不是则刹车到最低转速时间, 然后启动电机。
windmill_check_disable=0	启动前检测转速是否低于最低转速?
always_do_brake_before_start=0	是则延时一段最低转速时间,然后启动电机,
brake_before_start=1	不是则刹车到最低转速时间, 然后启动电机。

产品信息区

6521 保留了 32 个 bit 用于存储客户产品和版本信息,存放在 EP14-EP15 两个存储地址中。

寄存器表

RegO/EPO		
位地址	寄存器名	功能描述
Bit0	no_brake_before_stop	0: 停止前刹车
		1: 停止前溜车
Bit1	idle_brake_set	0: 空闲模式下不刹车
		1: 空闲模式下刹车
Bit5-2	-	
Bit6	ocp_dis	0: OCP 保护使能
		1: 0CP 保护不使能
Bit7	ocp_restart_en	0: 0CP 保护后不重启
		1: 0CP 保护后自动重启
Bit8	-	
Bit9	otp_dis	0: 过温保护使能
		1: 过温保护不使能
Bit10	ovp_dis	0: 过压保护使能
		1: 过压保护不使能
Bit11	uvp_dis	0: 欠压保护使能
		1: 欠压保护不使能
Bit12	otp_coast_set	0: 过温保护时刹车
		1: 过温保护时溜车
Bit13	ovp_coast_set	0: 过压保护时刹车
		1: 过压保护时溜车
Bit14	uvp_coast_set	0: 欠压保护时刹车
		1: 欠压保护时溜车
Bit15	lock_coast_set	0: 堵转保护时刹车
		1: 堵转保护时溜车

Reg1/EP1		
位地址	寄存器名	功能描述
Bit0	ex_hall	用于设置电机运行正反转
		0: Hall 信号不取反
		1: Hall 信号取反

Bit1	-	
Bit2	-	
Bit3	fg_div2_rd_ex_en	当 fd_rd=0 时
		0: FG
		1: FG/2
		当 fd_rd=1 时
		0: 运行时 RD 为高,停止时 RD 为低
		1:运行时 RD 为低,停止时 RD 为高
Bit4	fg_rd	0: FG/RD 引脚为 FG 功能
		1: FG/RD 引脚为 RD 功能
Bit6-5	pwm_in_freq[1:0]	
Bit7	-	
Bit8	square_lock_time_set	0: 方波启动阶段 lock_time_set 不放大
		1: 方波启动阶段 lock_time_set 放大 2 倍
Bit11-9	square_number_set[2:0]	方波启动个数:
		square_number_set+3个
Bit15-12	initial_out_duty[3:0]	初始输出占空比设置
		(initial_out_duty+1) *16/256

Reg2/EP2		
位地址	寄存器名	功能描述
Bit4-0	max_angle_dlt_set[4:0]	最大超前角,最高速时的超前角设置
		0: 10*1.4°
		其他: max_angle_dlt_set*1.4°
Bit9-5	min_angle_dlt_set[4:0]	最小超前角,最低速时的超前角设置
		min_angle_dlt_set*1.4°
Bit13-10	percentage_start_set[3:0]	PWM 输入启动占空比:
		0:23%
		其他: (percentage_start_set+1) *4/256
Bit15-14	percentage_hys_set[1:0]	启动/停止占空比迟滞:
		(10- percentage_hys_set*2) /256
		比如:
		启动占空比 23%, hys_set=1
		那么停止占空比=23%-(10-1*2)/256=19.9%

Reg3/EP3		
位地址	寄存器名	功能描述
Bit0	brake_before_start	windmill_check_disable=0 时有效 0: 溜车到最低转速再启动 1: 刹车到最低转速再启动 见"顺风启动"功能描述
Bit1	always_do_brake_before_start	windmill_check_disable=0 时有效

	<u> </u>	
		0: 溜车到最低转速再启动
		1: 刹车到最低转速再启动
		见"顺风启动"功能描述
Bit2	windmill_check_disable	0: 顺风检测使能
		1: 顺风检测不使能,启动时不管电机转速
		多大直接启动。
Bit3	no_wait_ramp_pwm_stop	0: PWM 引脚占空比值小于停止阈值时,停
		止输出。
		1: PWM 斜波占空比值小于停止阈值时,
		停止输出。
Bit4	-	
Bit5	wait_full_stop_for_FGRD	0: 进入 IDLE 模式后 FG/RD 停止
		1: 转速低于最低转速后 FG/RD 才停止
Bit10-6	acc_time_set[4:0]	PWM 斜波的加速步进时间:
		((acc_time_set ⊕0x10) +1)*0.81ms
		步进时间由小到大:
		0x10->0x1F->0x00->0x0F
Bit15-11	dec_time_set[4:0]	PWM 斜波的减速步进时间:
		((acc_time_set ⊕0x10) +1)*0.81ms
		步进时间由小到大:
		0x10->0x1F->0x00->0x0F

Reg4/EP4			
位地址	寄存器名	功能描述	
Bit2-0	ocl_ana_set[2:0]	电流限流点设置:	
		000: 不使能	
		001: 1.15A	
		010: 1.2A	
		011: 1.3A	
		100: 0.53A	
		101: 0.66A	
		110: 0.78A	
		111: 0.91A	
Bit6-3	speed_low_set[3:0]	最低转速周期时间设置:	
		((speed_low_set*4) +16) *3ms	
		最小时间: 48ms,对应机械转速: 625rpm	
		最大时间: 228ms, 对应机械转速: 131rpm	
Bit11-7	lock_time_set[4:0]	堵转检测时间(ms):	
		方波启动阶段:	
		如果 square_lock_time_set=1,	

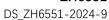
		则	检	测	时	间	=((31-
		lock_	_time_	set)*2)	*49ms		
		如果	square	e_lock_	time_se	t=0,则	检测时间
		=(31-	-lock_	time_se	t)**49ı	ns	
		弦波	阶段:				
		检测	时间=(31-lock	_time_s	set)**4	19ms
Bit15-12	lock_recover_time_set[3:0]	堵转位	恢复时	间(s):			
		((set	t*4+17))%64)*0	. 203s		
		%64:	除 64 取	双余数			

Reg5/EP5		
位地址	寄存器名	功能描述
Bit0	curve_table_en	0: 使用外部 PWM 占空比输入
		1: 使能自定义速度曲线。
		外部 PWM 占空比映射自定义的速度值
		见"速度曲线配置"功能描述
Bit1	wave_table_en	0: 使用默认的相电压驱动波形
		1: 使用自定义的相电压驱动波形
		见"波形曲线"功能描述
Bit2	speed_close_loop_en	0: 开环控制
		1: 速度闭环控制
Bit5-3	pid_ki[2:0]	速度闭环时,转速调节的 Ki 参数
Bit7-6	pid_speed_range	速度闭环时,最大转速档位设置(rpm):
		00: (156.25/256)*pid_max_speed*30
		01: (312.5/256)*pid_max_speed*30
		10: (625/256)*pid_max_speed*30
		11: (1250/256)*pid_max_speed*30
Bit15-8	pid_max_speed[7:0]	结合 pid_speed_range 设置闭环控制时的最
		大转速

Reg6/EP6		
位地址	寄存器名	功能描述
Bit0	-	
Bit2-1	-	
Bit3	sleep_dis	0: Sleep 使能 1: Sleep 关闭 Sleep 是指 PWM 脚拉低后芯片进入低功耗模 式
Bit4	_	

Bit5	_		
Bit7-6	ovp_set[1:0]	过压保护点设置:	
		00: 28V 保护, 27V 恢复	
		01: 24V 保护, 23V 恢复	
		10: 20V 保护, 19V 恢复	
		11: 18V 保护, 17V 恢复	
Bit15-8	=		

Reg8/EP8		
位地址	寄存器名	功能描述
Bit4-0	wave_slope1[4:0]	见"波形曲线"功能描述
Bit10-5	wave_turning_point2[5:0]	见"波形曲线"功能描述
Bit15-11	wave_slope2[4:0]	见"波形曲线"功能描述

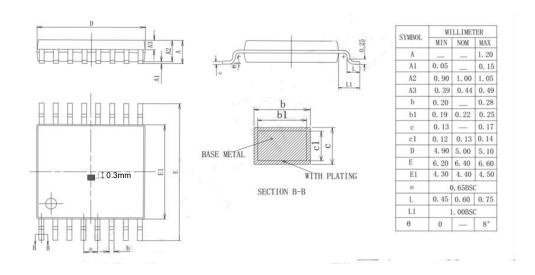

Reg9/EP9		
位地址	寄存器名	功能描述
Bit5-0	<pre>wave_turning_point3[5:0]</pre>	见"波形曲线"功能描述
Bit10-6	wave_slope3[4:0]	见"波形曲线"功能描述
Bit15-11	wave_slope4[4:0]	见"波形曲线"功能描述

Reg10/EP10			
位地址	寄存器名	功能描述	
Bit5-0	wave_turning_point4[5:0]	见"波形曲线"功能描述	
Bit15-6	-		

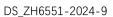
EP14		
位地址	寄存器名	功能描述
Bit15-0	UID0[15:0]	用户自定义 ID 号

EP15		
位地址	寄存器名	功能描述
Bit15-0	UID1[15:0]	用户自定义 ID 号

EP16-EP25	



位地址	寄存器名	功能描述
Bit7-0	curve_x0-19[7:0]	见"速度曲线配置"功能描述
Bit15-8	curve_y0-19[7:0]	见"速度曲线配置"功能描述



封装尺寸及霍尔位置

TSSOP16

注: 霍尔坐标位置如上图所示。

修改历史

版本	修改日期	修改内容
V1.0	2024.09.13	初始版本
V1.1	2025.02.24	更新引脚图和引脚说明。
V1.2	2025.03.27	增加功能性描述和寄存器表描述