

带REF/OCD的高精度低噪声电流传感器IC

1. 产品特性

- 灵敏度误差<1.5%
- 3.3V/5V供电电压,可选比例模拟输出
- 自检及多种功能诊断:
- OTP、OVP、OCD、短线检测等
- 固定非比例输出VREF,支持双向操作
- 24 Bit customer ID
- TO-94封装类型

2. 典型应用

- 逆变器电流检测
- 电机相位和轨电流检测
- 光伏逆变器
- 过流保护
- 不间断电源

3. 产品描述

SC4665是一种直插式可编程霍尔传感器,配合磁环用于开环精确电流检测或者位置检测。

SC4665的传输特性出厂会经过温漂调整,并在终端客户校准期间可编程(偏移、灵敏度、滤波、内部过流阈值)。具有高达400 kHz的带宽和快速响应时间,特别适用于高速应用环境,如逆变器和转换器,这些由于快速切换需要快速响应时间。输出钳位电平和芯片滤波作为应用需求也是可编程的。

该传感器设计用于恶劣工业应用,适用环境温度-40至 125°C。供电电压通常为3.3V或5V。在TO-94封装中, SC4665具有REF或OCD功能。

SC4665 采用 TO-94 封装, 亚光镀锡, 采用无卤绿料, 满足环保要求。

图1. TO-94封装示意图

带REF/OCD的高精度低噪声电流传感器IC

目录

1. 产品特性 1
2. 典型应用1
3. 产品描述1
4. 引脚定义
5. 订购信息
6. 极限参数5
7. 静电保护5
8. 热特性5
9. 工作参数
9.1. 电参数
9.2. 磁特性 7
9 3 RFF 会数(SIP4 with RFF) 8

10. 功能框图	9
11. 功能描述	9
12. 典型应用	12
13. 封装信息 "TO-94(VB)"	13
1.4 压中步士	1,

4. 引脚定义

4 脚 TO-94 VB 封装 (俯视图)

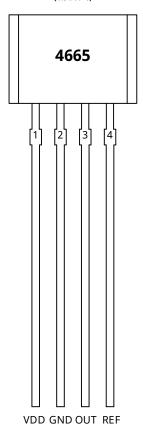
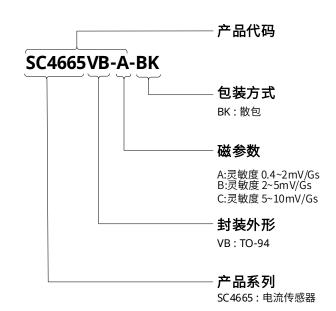


图 2. 引脚描述

67 Shr		TO-94
名称	序号	描述
VDD	1	电源
GND	2	地
OUT	3	模拟输出端
REF	4	参考信号输出


5. 订购信息

产品名称	灵敏度(mV/Gs) ⁽¹⁾	工作温度(°C)	功能(2)	封装形式	包装形式	数量
SC4665VB-A-BK ⁽³⁾	0.4~2mV/Gs	-40-125	Vref	TO-94	散包	500 颗/袋
SC4665VB-B-BK	2~5mV/Gs	-40-125	Vref	TO-94	散包	500 颗/袋
SC4665VB-C-BK	5~10mV/Gs	-40-125	Vref	TO-94	散包	500 颗/袋

备注:

- (1) 此灵敏度数据均为 5V 应用条件下
- (2) 若有 OCD 过流检测功能应用需求,请联系赛卓工程师提供支持
- (3) 标示不同的灵敏度

订购信息格式说明

6. 极限参数

符号	参数	测试条件	最小值	最大值	单位
V_{DD_abs}	电源正向耐压		-	6	٧
V_{DDR_abs}	电源反向耐压		-0.2	0	V
V _{OUT_abs}	输出正向耐压		-	V _{DD} +0.2	V
V _{OUTR_abs}	输出反向耐压	V _{DD} =0 to -1.0V	-0.3	-	٧
T _A	工作温度范围		-40	125	°C
T _{STG}	存储温度范围		-55	165	°C
T _{J(max)}	最大结温温度		-	165	°C
Endurance	可编程次数		100		cycles

备注:

以上列出的应力可能会对器件造成永久性的损害,长时间暴露在绝对最大额定值条件下可能会影响器件的可靠性。

7. 静电保护

符号	参数	最小值	最大值	单位
V	人体失效模型,参考 ANSI/ESDA/JEDEC JS-001 标准(HBM) ⁽¹⁾	-8	+8	kV
V _{ESD}	充放电失效模型,参考 ANSI/ESDA/JEDEC JS-002 标准(CDM) ⁽²⁾	-750	+750	V

备注:

(1) JEDEC 文件 JEP155 指出,4000V HBM 允许使用标准 ESD 控制过程进行安全制造。

(2) JEDEC 文件 JEP157 指出,750V CDM 允许使用标准 ESD 控制过程进行安全制造。

8. 热特性

符号	参数	测试条件	值 ⁽¹⁾	单位
$R_{ heta_{JA}}$	TO-94 封装形式热阻	JEDEC 1s0p 在 JESD 51-3 中定义	177	°C/W

备注:

(1)最大工作电压必须满足功耗和结温的要求,参照热特性

9. 工作参数

9.1 电参数

(工作电压范围 4.5V to 5.5V, 环境温度-40°C to 105° C ,另有说明除外)

符号	参数	测试条件	最小值	典型值	最大值	单位
V_{DD}	供电电压	仅 5V 产品	4.5	5	5.5	٧
I_{DD}	供电电流	在 V _{OUT} 或 V _{REF} 上无负载;V _{CC} = 5 V	-	9	-	mA
C _{BYPASS}	电源旁路电容	推荐 V _{CC} 到 GND	-	0.1	-	μF
R _{VREF}	Ref 负载电阻	V _{REF} 到 GND,V _{REF} 到 V _{CC}	1	-	-	ΚΩ
C_{VREF}	Ref 负载电容	V _{REF} 到 GND	-	-	6	nF
Тро	上电延时	V _{DD} =0 到 5V,V _{CC} =90%到 V _{OUT} =90%时间	-	77	-	us
V _{POR(H)}		V _{DD} =0 to 5.5	-	2.9	-	٧
$V_{POR(L)}$	→ 上电复位电压 	V _{DD} =5.5 to 0	-	2.6	-	٧
U _{VLOH}	6 G (D45)	V _{DD} =0 to 5.5V	-	4.1	4.3	٧
U_{VLOL}	→ 欠压保护 	V _{DD} =5 to 0V	-	3.25	-	٧
V_{OVPH}	74 CT (CT+2) (O) (D) (TT/T	V _{DD} rising	-	6.4	-	٧
V_{OVPH}	一 过压保护(OVP)阈值	V _{DD} rising	-	5.9	-	٧
t dOVD(E)	0) (0 77) [11]	时间从 V _{CC} 上升至≥V _{OVP} (EN)到 OVP 生效	-	54	-	us
t _{dOVD(D)}	OVP 延迟时间	时间从 V _{CC} 下降至≤V _{OVP} (DIS)到 OVP 清除	-	7.6	-	us
T_RES	响应时间	C _{Load} , Sen, EE _{Noise} , EE _{BW} , All Temp	-	1	-	us
T _r	上升时间	T _A = 25°C, CL = 1 nF, 10%-90% of 1 V	-	-	3	us
I_{OUT}	Vоит负载电流	V _{DD} =4.55.5, V _{OUT} =0.54.5, I _{load} =-10-10mA	-	9	-	mA
I_{LEAK}	输出漏电流	高阻抗模式	-	6	20	uA
R_{LoadL}	V	V _{OUT} to GND, RL=10k to 1k, B=+B _{MAX}	1	-	-	kΩ
R_{LoadH}	→ Vout 负载电阻	V _{OUT} to VCC, RL=10k to 1k, B=-B _{MAX}	1	-	-	kΩ
Clamp_lo	钳位输出电压	B=-B _{MAX} , RL=5k to VDD EE_CL=enable	-	5	-	%V _{DD}
Clamp_hi	(EE_Clamp level=0)	B=+B _{MAX} , RL=5k to GND EE_CL=enable	-	95	-	%V _{DD}
Clamp_lo	钳位输出电压	B=-B _{MAX} , RL=5k to VDD EE_CL=enable	-	7.5	-	%V _{DD}
Clamp_hi	(EE_Clamp level=1)	B=+B _{MAX} , RL=5k to GND EE_CL=enable	-	92.5	-	%V _{DD}
$V_{\text{SAT(H)}}$	加州中区	B=-B _{MAX} , RL=5k to V _{DD} EE_CL=enable	-	0.5	-	%V _{DD}
V _{SAT(L)}	一 饱和电压	B=+B _{MAX,} RL=5k to GND EE_CL=enable	-	99	-	%V _{DD}
VO _{OR}	输出工作范围	5V 供电	0.5	-	4.5	٧
S_R	输出斜率	Sen, CL	0.8	-	-	V/us

SC4665

带REF/OCD的高精度低噪声电流传感器IC

Np-p	V _{out} 噪声	C _{Load} , Sen, TA, EE _{Noise} , EEBW	-	40	-	mVp-p
NRMS	VOUT噪户	C _{Load} , Sen, TA, EE _{Noise} , EE _{BW}	-	5	-	mVRMS
Fc	斩波频率	-	-	2	-	MHz
BW	内部带宽	Signal -3dB, CL=1nF	120	400		KHZ

9.2 磁特性

(工作电压 5V, 环境温度 25°C, 另有说明除外)

符号	参数	测试条件	最小值	典型值	最大值	单位
		EE=0, B=0, Sen=-Smax+Smax	-	50	-	%V _{DD}
		EE=1, B=0, Sen=-Smax+Smax	-	10	-	%V _{DD}
		EE=2, B=0, Sen=-Smax+Smax	-	0.5	-	V
VOT	VO 和2004A	EE=3, B=0, Sen=-Smax+Smax	-	0.33	-	V
VQT	VQ 粗调档	EE=4, B=0, Sen=-Smax+Smax	-	1.35	-	V
		EE=5, B=0, Sen=-Smax+Smax	-	1.5	-	V
		EE=6, B=0, Sen=-Smax+Smax	-	1.65	-	V
		EE=7, B=0, Sen=-Smax+Smax	-	2.5	-	V
VQ_{PR}	VQ 细调范围	B=0, Sen=Smax, EE=+-max	2.3	-	2.7	V
VQ _{Bits}	VQ 细调位	guaranteed by design	-	10	-	bit
VQ_{Step}	VQ 细调步进	Scan the EE for VQ	-	0.39	0.5	mV
VQ_{Acc}	VQ 调节误差	B=0, Sen=Smax, EE=+-max	-0.5	0	0.5	mV
VQ_{Temp}	VQ 温漂	T _A =-40125°C	-1	0	1	Gs
ACC _{VQ}	VQ 总误差	T _A =-40125°C	-15	0	15	mV
VOUT _{LIN}	线性输出范围	-	10	-	90	%
B_{RG}	感应磁场强度范围	-	±450	-	±4500	Gs
M _{sen}	灵敏度随 V _{DD} 变化比	V _{DD} =4.55.5V	-	-	-	%
SRG	灵敏度范围	Guaranteed by design	0.4	-	10	mV/Gs
S _{Step}	灵敏度调节步进	Scan the EE for Sen	-	0.1	-	%
S _{Acc}	灵敏度调节误差	Sen=Smax, EE=+-max	-1	0	1	%
S _{Temp}	灵敏度温漂	T _A =-40125°C	-2.5	0	2.5	%
L _N	非线性误差	-	-0.5	0	0.5	%
DCDD	中语作制以	0-1kHz, 100mV pk-pk ripple on V _{CC} B=0	-	40	-	dB
PSRR	电源抑制比	1k-100kHz, 100mV pk-pk ripple on V _{CC} B=0	-	25	-	dB

备注:

1Gs = 0.1mT

9.3 REF 参数(SIP4 with REF)

(工作电压 5V, 环境温度 25℃ ,另有说明除外)

符号	参数	测试条件	最小值	典型值	最大值	单位
		EE=0, B=0, Sen=-Smax+Smax	-	50	-	%V _{DD}
		EE=1, B=0, Sen=-Smax+Smax	-	10	-	%V _{DD}
		EE=2, B=0, Sen=-Smax+Smax	-	0.5	-	V
VDEE	VDEE *B 3 团 + V	EE=3, B=0, Sen=-Smax+Smax	-	0.33	-	V
VREF	│ VREF 粗调档 │ │	EE=4, B=0, Sen=-Smax+Smax	-	1.35	-	V
		EE=5, B=0, Sen=-Smax+Smax	-	1.5	-	V
		EE=6, B=0, Sen=-Smax+Smax	-	1.65	-	V
		EE=7, B=0, Sen=-Smax+Smax	-	2.5	-	V
VREF _{PR}	VREF 细调范围	EE=0,B=0, Sen=Smax, EE=+-max	2.4	-	2.6	V
VREF _{Bits}	VREF 细调位	Guaranteed by design	-	9	-	bit
VREF _{Step}	VREF 细调步进	Scan the EE for VREF	-	0.39	0.5	mV
VREF _{Acc}	VREF 调节误差	B=0, Sen=Smax, EE=+-max	-0.5	0	0.5	mV
ACC _{VREF}	VREF 总误差	T _A =-40125°C	-5	0	5	mV

10. 功能框图

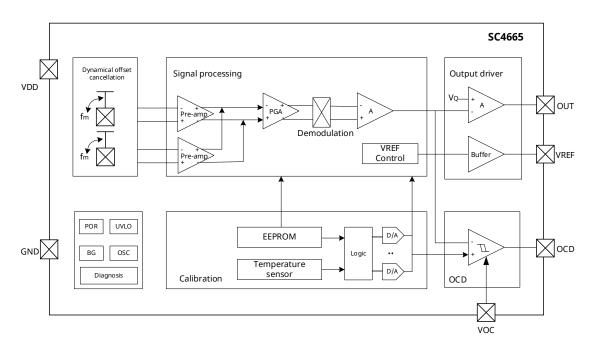


图 3. 功能框图概览

11. 功能描述

灵敏度(S)

$$Sens = [VOUT(B1) - VOUT(B2)]/(B1 - B2)$$

当垂直于芯片丝印侧的南极磁场接近时,输出电压成比例增加,直到达到电源电压。相反,当垂直于芯片丝印侧的 北极磁场接近时,输出电压成比例降低,直到达到地电平。灵敏度定义为输出电压变化和磁场变化的具体数值,一般以 mV/Gs 或 mV/mT 为单位。

上电时间(Tpo):

上电时间(Power on time, TPO)定义为电源达到最小规定工作电压(VCC(min))后,在外加磁场作用下,输出电压稳定稳态值±10%范围内所需的时间,如图 4 所示。

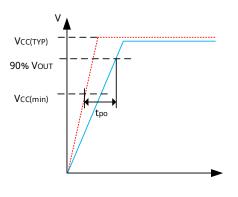


图 4. 上电时间定义

响应时间 (T_{RESPONSE}):

当外加磁场达到其最终值的 80%时,与传感器达到与外加磁场相对应的输出的 80%时之间的时间间隔(见图 5)。

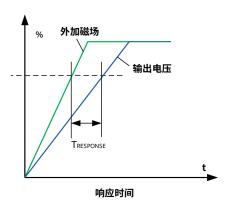


图 5. 输出延迟时间定义

参考端输出电压 (VREF):

当 SC4665 额外提供一个与电源无关的恒定输出信号。即 VCC=4.5~5.5V,VREF=2.5V。在出厂时,该参数已被校准,客户也可自行校准。结合 VOUT 端,可以实现差分输出方式,客户也可以使用 VOUT 单端输出方式。

参考段输出电压 (VoE):

VOUT-VREF 的实际值与理论值(理论值 VOUT-VREF=0)之间的误差。其中 VOUT 与 VREF 都不随电源的变动而变动。即无磁场情况下,VCC=4.5~5.5V,VOUT=VREF=2.5V。

响应时间 (T_{RESPONSE}):

当外加磁场达到其最终值的 80%时,与传感器达到与外加磁场相对应的输出的 80%时之间的时间间隔。

灵敏度编程范围 (Senspr):

磁灵敏度(Sens)可在灵敏度范围限制内围绕其初始值进行编程: Sens_{PR}(最小)和 Sens_{PR}(最大)。超出指定的灵敏度范围将导致灵敏度温度漂移 Sens_{TC} 变差,超出指定值。

温度范围内的灵敏度漂移 (Sens_{TC}):

温度系数效应会导致磁灵敏度 Sens 在工作环境温度范围 (T_A) 内偏离其预期值。温度范围内的灵敏度漂移(Sens $_{TC}$) 定义为:

$$\Delta Sens_{TC} = \frac{Sens_{T_A} - Sens_{EXPECTED(T_A)}}{Sens_{EXPECTED(T_A)}} \times 100\%$$

灵敏度线性误差 (Linerr):

SC4665设计用于对外加磁场提供线性输出。考虑两个磁场 B1 和 B2。理想情况下,在给定电源电压和温度条件下,器件对两个磁场的灵敏度是相同的。如果在 B1 和 B2 处测得的灵敏度不同,则会出现线性误差。

分别计算正磁场(LinerRPOS)和负磁场(LinerRNEG)的线性误差。线性误差(%)的测量值定义为:

$$Lin_{ERR_{POS}} = \left(1 - \frac{Sens_{B_{POS2}}}{Sens_{B_{POS1}}}\right) \times 100\%$$

$$Lin_{ERR_{NEG}} = \left(1 - \frac{Sens_{BNEG2}}{Sens_{BNEG1}}\right) \times 100\%$$

其中:

$$Sens_{B_x} = \frac{|V_{OUT(B_x)} - V_{OUT(Q)}|}{B_x}$$

BPOSx 和 BNEGx 分别为正磁场和负磁场,相对于静态电压输出,|BPOS2|=2×|BPOS1|,|BNEG2|= 2×|BNEG1|。 因此:

$$LinERR = max(LinERR_{POS}, LinERR_{NEG})$$

对称灵敏度误差 (Symerr):

SC4665 灵敏度在两个磁场强度相等、极性相反的情况下保持不变。对称误差 Symer(%)的测量和定义如下:

$$Sym_{ERR} = \left(1 - \frac{Sens_{BPOS}}{Sens_{BNEG}}\right) \times 100\% \tag{7}$$

其中,SensBx 如公式 12 所定义,BPOSx 和 BNEGx 分别为正磁场和负磁场,即|BPOSx|=|BNEGx|。

比率误差 (Raterr):

SC4665 具有比率输出功能。这意味着静态电压输出(V_{OUT(Q)})磁灵敏度、Sens 和输出电压钳位(V_{CLP(HIGH)}和 V_{CLP(LOW)})与电源电压(VCC)成正比。换句话说,当电源电压增加或减少一定百分比时,每个特性也会以相同的百分比增加或减少。误差是测量到的电源电压相对于 5V 的变化与测量到的各特性变化之间的差值。

给定电源电压(VCC)时,静态电压输出的比率误差 RaterRvOuт(Q)(%)定义为:

$$Rat_{ERRV_{OUT(Q)}} = (1 - \frac{v_{OUT(Q)(VCC)}/v_{OUT(Q)(5V)}}{v_{cc}/5V}) \times 100\%$$
 (8)

给定电源电压(VCC)时,磁灵敏度的比率误差 RaterRsens(%)定义为:

$$Rat_{ERRSens} = \left(1 - \frac{Sens_{(VCC)}/Sens_{(5V)}}{VCC/5V}\right) \times 100\% (9)$$

给定电源电压(VCC)时钳位电压的比率误差 RaterRCLP(%)定义为:

$$Rat_{ERRCLP} = (1 - \frac{V_{CLP(VCC)}/V_{CLP(5V)}}{VCC/5V}) \times 100\%$$
 (10)

其中 VCIP 为 VCIPH 或 VCIPI

12. 典型应用

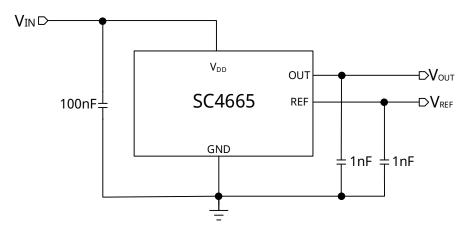
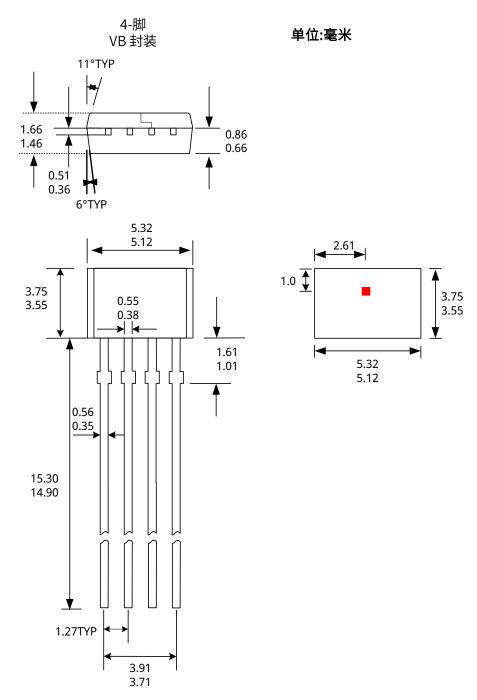



图 6. 典型应用线路图

13. 封装信息 "TO-94(VB)"

注:
1.供应商可选的实际本体和管脚形状尺寸位于图示范围内。
2.高度不包括模具浇口溢料。
如果未指定公差,则尺寸为公称尺寸。
3.红色部件为霍尔板

带REF/OCD的高精度低噪声电流传感器IC

14. 历史版本

版本	日期	描述
Rev.E0.1	2022-07-10	初始规格书
Rev.A1.0	2025-02-06	正式版发布