

可编程线性输出霍尔效应传感器

1. 产品特性

- 轨对轨输出
- 客户端标定
- 灵敏度范围: 8mV/Gs~24mV/Gs
- 静态输出电压和灵敏度温漂小
- 输出电压和灵敏度随电源波动变化小
- 环境温度范围宽: -40℃~125℃
- 抗机械应力
- 欠压锁定
- 封装形式: TO-92S

2. 产品应用

- 汇流箱电流传感器
- 角度检测
- 过流检测电路
- 阻尼器控制

3. 产品描述

SC4616 是专门为角度检测和直流电流检测等应用设计的。 SC4616 提供客户端标定方案但是不会增加太多成本, SC4616 的可编程特性使其能够在电流传感模块组装中弥 补安装误差。

SC4616 的输出电压大小与其感应的磁场大小成比例关系。 静态电压输出和磁灵敏度均可调节。静态电压输出可设置 为 2.5V,灵敏度可在 8mV/Gs~24mV/Gs 之间调节,感应 极性也可以更改。

SC4616 电路集成了霍尔元件、温度补偿电路、小信号高增益放大器、低阻抗输出级、动态斩波技术和修调电路。

该器件封装在一个薄型的 3-Pin SIP 封装中,便于与磁芯集成,组装成高度精确的电流传感模块。

该芯片采用 TO-92S 直插封装, 无铅亚光镀锡。

图1. TO-92S外观图

目录

1. 产品特性1	8. 工作参数	6
<i>2. 产品应用</i> 1	工作参数(续)	7
3. 产品描述1	9. 功能框图	8
4. 引脚定义3	10. 功能描述	8
5. 订购信息4	11. 典型应用	9
6. 极限参数5	<i>12. 封装信息 "</i> TO-92S <i>"</i>	10
7. 静电保护	13. 历史版本	11

4. 引脚定义

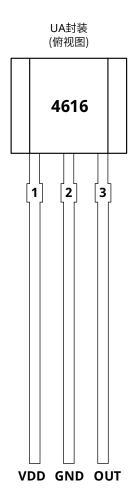


图 2. 引脚描述

5	脚	类型	*************************************
名称	序号	突空	描述
VDD	1	电源	4.5V~5.5V 供电电源
GND	2	地	地引脚
OUT	3	输出	输出引脚

5. 订购信息

产品名称	丝印	温度范围(℃)	封装外形	包装方式	数量
SC4616UA-BK ⁽¹⁾	4616	-40~125	TO-92S	散包	1000 颗/包

6. 极限参数

(工作的自然温度范围内除非另有说明)

符号	参数	测试条件	最小值	最大值	单位
V _{DD}	电源端耐压	T _J =150°C	-0.5	6	V
V _{OUT}	输出端耐压	T _J =150°C	-0.3	6	V
I_{DD}	电源电流		-	20	mA
I _{OUT}	输出电流		-	3	mA
T _A	工作温度范围		-40	125	°C
T _J	结温范围		-50	165	°C
T _{STG}	储存温度范围		-65	170	°C

备注:

以上列出的应力可能会对器件造成永久性的损害。长时间暴露在绝对最大额定值条件下可能会影响器件的可靠性。

7. 静电保护

符号	参数	测试条件	最小值	最大值	单位
НВМ	VESD	参照 AEC-Q100-002E HBM 标准,R=1.5kΩ,C=100pF	-4	4	kV

8. 工作参数

工作的自然温度范围内(除非另有说明)

符号	参数	测试条件	最小值	典型值	最大值	单位		
电参数	电参数							
V _{DD}	工作电压		4.5	5	5.5	٧		
I_{DD}	工作电流	V _{DD} =5.0V, T _A =25°C	3.0	5.0	9.0	mA		
V _{UVLOHI}		T _A =25°C	-	4.0	-	٧		
V _{UVLOLOW}	欠压阈值(1)	T _A =25°C	-	3.7	-	٧		
t _{PO}	上电时间(2)	T _A =25°C,V _{OUT} to 2.5V	-	6.0	10	μs		
BW	带宽	Output signal -3dB	3.0	5.0	-	kHz		
f _C	斩波频率 ⁽³⁾	T _A =25°C	-	500	-	kHz		
输出参数	输出参数							
CL	输出负载电容	V _{OUT} to GND	-	-	10	nF		
I_{Source}	输出负载能力	V _{OUT} to V _{DD}	1.0	-	-	mA		
I_{Sink}		V _{OUT} to GND	1.5	-	-	mA		
V _{OUT(H)}	****	T _A =25°C, B=1000Gs	4.8	4.9	4.99	٧		
V _{OUT(L)}	- 输出电压范围	T _A =25°C, B=-1000Gs	0.01	0.1	0.2	V		
t _{RESP}	阶跃响应时间	延迟输出信号达到 90%	120	200	-	μs		
V _N	输出端噪声(4)	T _A =25°C, Sens=16.0mV/Gs	-	30	-	mV _(p-p)		
编程前设定								
V _{OUT(Q)init}	静态电压输出	T _A =25°C, B=0Gs	-	2.5	-	٧		
Sens _{init}	预设灵敏度	T _A =25°C	-	8.0	-	mV/Gs		
Lin _{ERR}	线性灵敏度误差		-	1.0	-	%		

备注:

- (1) 上电时,SC4616的输出将保持低电平,直到V_{DD}超过V_{UVLOHI}。一旦通电,输出将保持有效,直到V_{DD}下降到以下V_{UVLOLO}时,输出将被拉低
- (2) 参考特性定义
- (3) fc在整个工作环境温度范围和过程中变化不超过20%
- (4) 由噪声密度频谱得到6 sigma值。

工作参数(续)

符号	参数	测试条件	最小值	典型值	最大值	单位		
静态输出电压	静态输出电压编程							
V _{OUT(Q)}	静态输出电压范围	B=0Gs, T _A =25°C	2.4	2.5	2.6	٧		
	静态输出电压编程位		-	6	-	Bits		
Step _{V(Q)}	平均静态编程步长	T _A =25°C	-	4	-	mV		
灵敏度的编程	灵敏度的编程							
Sens	灵敏度范围	T _A =25°C	8	-	24	mV/Gs		
	灵敏度的编程位		-	9	-	Bits		
Step _{SEN}	平均灵敏度步长	T _A =25°C	-	40	-	μV/Gs		
温漂特性	温漂特性							
$\triangle V_{OUT(Q)}$	静态输出电压漂移	Sens=10.0mV/Gs	-	20	40	mV		
∆Sens	灵敏度漂移	Sens=10.0mV/Gs	-	2	-	%		

9. 功能框图

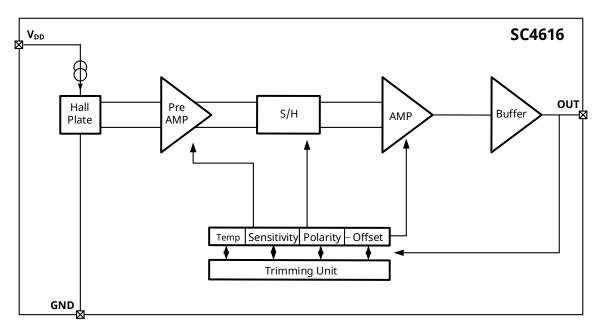


图 3. 功能框图

10. 功能描述

上电时间: 当电源升到工作电压时,设备输出需要有限的时间对输入磁场做出反应。上电时间定义为电源达到其规定的最小工作电压 V_{DD(min)}后输出电压开始响应外加磁场所需的时间。

静态输出电压:静止状态(磁场 B=0)时。

静态输出电压在温度范围内漂移:由于内部元件公差和温度考虑,静态输出电压可能会在工作环境温度下从其标称值漂 移。为了规范,在温度范围内的静态输出电压漂移△V_{OUT(O)}定义为:

$$\triangle V_{OUT(Q)} = \triangle V_{OUT(Q)TA} \triangle V_{OUT(Q)25^{\circ}C}$$

灵敏度:垂直于丝印表面的 S 极磁场会增加输出电压大小。输出电压增加的量与所加磁场的大小成正比。相反,N 极性磁场将使输出电压降低。该比例被指定为芯片的磁灵敏度 Sens (mV/Gs),定义为:

$$Sens = \frac{VOUT(B+) - VOUT(B-)}{B(+) - B(-)}$$

B(+)和 B(-)是两个极性相反的磁场。

11. 典型应用

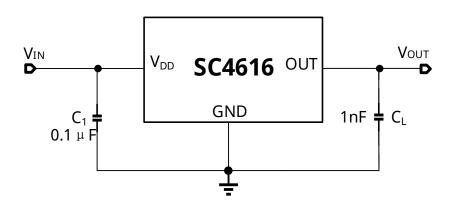


图 4. 典型应用框图

在电源工作电压范围内,芯片的静态(磁场强度为零)输出电压 $V_{OUT(Q)}$ 典型值为电源电压一半。当垂直于芯片丝印面的南极磁场增强时,芯片的输出电压成比例增加;相反当北极作用于芯片的丝印面时,输出电压以相同比例同步减小。感应极性可以更改。芯片的灵敏度定义为输出电压的变化量(mV)与磁场变化量(Gs)的比值。

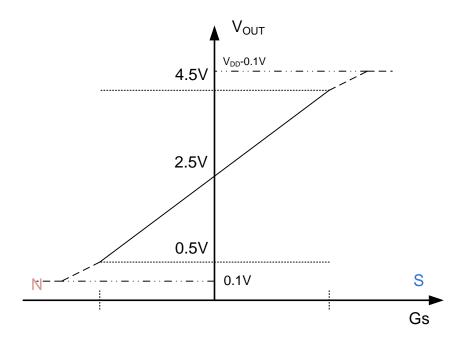
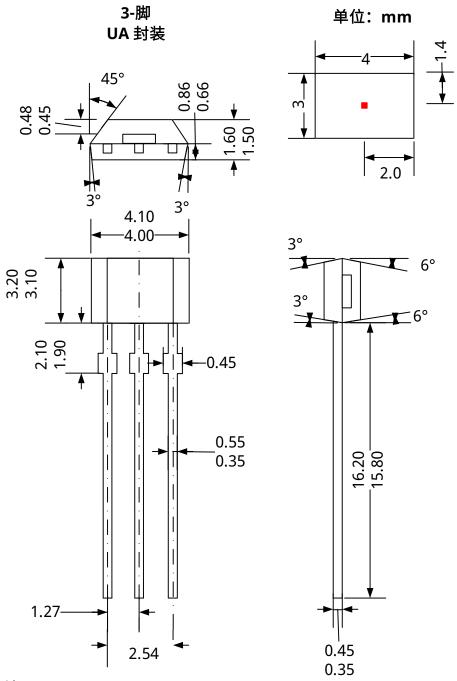



图 5. 输入输出特性

12. 封装信息 "TO-92S"

注:

- 1.供应商可选的实际本体和管脚形状尺寸位于图示范围内。
- 2.高度不包括模具浇口溢料。
- 3.镀层厚度7-15um

如果未指定公差,则尺寸为公称尺寸。

13. 历史版本

版本号	日期	描述
Rev1.0	2017-08-14	初始版本
Rev2.0	2018-11-15	完善产品特性
Rev2.3	2019-09-22	旧版本规格书最终版本号
RevA/1.0	2020-11-19	统一格式发布
Rev.A1.1	2025-06-04	更新订购信息,更新规格书格式