

PWM协议输出三线差分速度传感器IC

1. 产品特性

- AEC-Q100 Grade0 汽车级认证
- ISO26262 ASIL-B 认证
- 三线制电压输出
- 检测速度和方向
- PWM协议输出
- 固定、自适应磁滞类型
- 支持南极和北极背磁
- 宽工作温度范围: -40℃~150℃
- 内置集成电容
- 单芯片解决方案
- 封装形式: TS-3

2. 产品应用

- 变速箱速度传感器
- 速度传感器

3. 产品描述

SC9686 是一款基于霍尔技术的集成式有源磁传感器,适用于变速箱速度传感器应用。三线电压型输出接口,PWM协议通信。它有两种磁滞类型:固定磁滞和自适应磁滞(微调选项)。支持零速检测。出色的灵敏度和精度以及宽泛的工作温度范围等特点,使该传感器非常适合苛刻的汽车要求。SC9686 采用PCB_Less封装,内置100nF和2.2nF 电容,具有出色的抗电磁干扰能力。芯片采用 TS-3 封装形式,亚光镀锡,采用无卤绿料,满足环保要求。

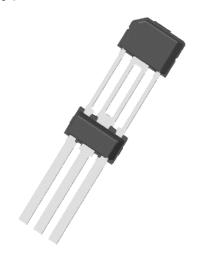


图1 TS-3外观图

目录

1. 产品特性 1	<i>10. 功能描述</i> 9
2. 产品应用1	10.1 非校准和校准模式9
3. 产品描述1	10.2 磁滞定义11
4. 引脚定义	10.3 方向变化、振动和异常状态11
5. 订购信息 4	<i>11.EMC(电磁兼容)</i> 12
6. 极限参数5	<i>11.1 EMC 电路(典型应用电路)</i> 12
7. 静电保护 5	<i>11.2 ISO 7637</i> 12
8. 工作参数6	<i>11.3 ISO 11452</i> 13
8.1 工作范围 6	<i>12. 封装信息</i> 14
8.2 电气特性6	13. 编带信息15
8.3 磁特性7	14. 历史版本16
9 <i>功能框</i> 图 9	

4. 引脚定义

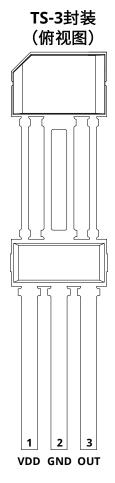


图 2 引脚描述

51	脚	类型	描述
名称	序号	英宝	捆坯
VDD	1	电源	4.5V ~ 20V 供电电源
GND	2	地	地
OUT	3	输出	漏极开路输出,需要上拉电阻

5. 订购信息

产品名称	丝印	旋转方向	正转脉宽(us)	反转脉宽(us)	温度范围(℃)	封装外形	包装方式	数量
SC9686T3-FP90-TR-Q	96860	VDD to OUT	45	90	-40~150	TS-3	编带	1500 颗/盘
SC9686T3-FP180-TR-Q	96861	VDD to OUT	45	180	-40~150	TS-3	编带	1500 颗/盘

订购信息格式

6. 极限参数

工作的自然温度范围内(除非另有说明)

符号	参数	测试条件	最小值	最大值	单位
		continuous, Tj<170°C	-16	16.5	V
V_{DD}	电源端耐压	max.60s	-	27	V
		max.60s	-18	-	V
V _{оит}	输出端耐压	continuous, Tj<170°C	-0.5	16.5	V
I_{sink}	输出灌电流	Output state=on,Vin < 0.5V,external current limitation	0	40	mA
		5000h, V _{DD} <16.5V	-	150	°C
T _J	最大结温	500h, V _{DD} <13V	-	160	°C
		1h, V _{DD} <13V	-	170	°C
T _{STG}	储存温度		-65	175	°C
$R_{\theta JA}$	封装热阻	参照 JESD51-1 标准	•	190	°C/W

备注:

高于此处列出的压力可能会导致器件永久损坏,长时间暴露在绝对最大额定值条件下可能会影响器件的可靠性。

7. 静电保护

符号	参数	测试条件	最小值	最大值	单位
V _{ESD_HBM}	НВМ	参照 AEC-Q100-002E HBM 标准,R=1.5kΩ,C=100pF	-8	8	kV
V_{ESD_CDM}	CDM	参照 AEC-Q100-011C CDM 标准	-750	750	V

8. 工作参数

8.1 工作范围

工作的自然温度范围内(V_{DD}=12V,除非另有说明)

符号	参数	测试条件	最小值	典型值	最大值	单位
V_{DD}	工作电压		4.5	12	20	٧
V_{res}	复位电压	Square and PWM output, reset voltage	3.9	-	4.1	٧
V _{rel}	返回电压	Square and PWM output, return voltage	4.1	-	4.5	٧
V _{AC}	电源抗交流干扰	V _{DD} =13V, 0 <f<sub>mod<150KHz</f<sub>	-	-	6	Vpp
dT_{j_Dir}	每个磁周期方向判断有效 允许的温度漂移范围	Valid for △B _{dir} >1.9mT	-7.5	-	7.5	К
dT_{j_Speed}	静止时的温度变化	Valid for △B>3mT	-150	-	150	К
$\triangle B_{\text{stat,I/r}}$	外部 2 霍尔点背磁偏差	B _{left} -B _{right} when the gear is stationary	-30	-	30	mT
$\triangle B_{\text{stat,m/o}}$	中间与外部霍尔背磁偏差	B _{center} -B _{right} when the gear is stationary	-30	-	30	mT
ΔB	差分磁场	B _{left} -B _{right} when the gear is rotating	-120	-	120	mT
f _{mag}	信号频率		0	-	12	kHz
f _{dir_min}	方向检测最小频率		-	0	1	Hz

8.2 电气特性

工作的自然温度范围内(V_{DD}=12V,除非另有说明)

符号	参数	测试条件	最小值	典型值	最大值	单位
I_{DD}	供电电流		5.9	7.0	8.4	mA
V_{Qsat}	输出饱和压降	I _Q =20mA	-	150	500	mV
I_{QL}	输出漏电流	V _{out} <20V	-	-	10	uA
t _r	上升时间	10% to 90% of output, V_{PU} =5V, R_{PU} =1.2K Ω , C_{Q} =1.8nF	4	-	11.4	us
t _f	下降时间	90% to 10% of output, V_{PU} =5V, R_{PU} =1.2K Ω , C_{Q} =1.8nF	3.2	4.5	5.8	us
t _{d_input}	输出校准延时	Additive to power up time	-	220	300	us
t _{PO}	上电时间		-	-	1	ms
n _{start}	霍尔感应点初始偏差校准 所需磁场信号边沿数	After power-on,running at stable air gap	-	-	3	edges
n _{DZ-Startup}	非校准模式下的边沿个数	After power-on,running at stable air gap	-	-	4	edges
n _{supp}	输出停止需要脉冲个数	After power-on or power reset	-	-	1	pulses
n _{DZ-Start}	输出第1个脉冲所需 磁场信号边沿数	After power-on,running at stable air gap	1	-	2	edges

PWM协议输出三线差分速度传感器IC

n _{DR-Start}	初始方向有效方向信息 检测,所需脉冲数	4th pulse has valid direction information △B _{dir} ≥2*△B _{limit}	-	-	2	pulses
n _{DR_change}	方向突变后识别方向 所需脉冲数	2nd pulse has valid direction information $\triangle B_{dir} \geqslant 4 + \triangle B_{limit}$	-	-	2	pulses
	.l. <i>(= 1</i> /4)	∆B≥2mT, 1sigma, T≤150°C, f=1kHz	-0.7	-	0.7	%
$S_{jit ext{-close}}$	小气隙输出抖动	∆B≥2mT, 1sigma, T≤170°C, f=1kHz	-2	-	2	%
		2mT≥△B≥△B _{limit} , 1sigma, T≤150°C, f=1kHz	-2	-	2	%
$S_{jit ext{-}far}$	大气隙输出抖动	2mT≥△B≥△B _{limit} , 1sigma, T≤170°C, f=1kHz	-4	-	4	%
$S_{jit ext{-}AC}$	电源有纹波情况下 输出抖动	V_{DD} =13V \pm 6Vpp, 1sigma, 0< f_{mod} <150kHz \triangle B=15mT	-0.5	-	0.5	%
$S_{jit ext{-speed}}$	速度脉冲抖动	rising edge of speed pulse relative to magnetic edge change	0	-	0.7	us
	启动和非校准模式下输出 边缘的系统相位误差		-90	-	90	٥
SC9686T3-FP90	0-TR-Q					
t _{w(FWD)}	正向脉冲宽度		38	45	52	us
$t_{w(\text{REV})}$	反向脉冲宽度		76	90	104	us
$t_{w(ND)}$	无方向脉冲周期		153	180	207	us
f_{FWD}	正向最高频率		0	-	12	KHz
f_{REV}	反向最高频率		0	-	7	KHz
f_{ND}	无方向最高频率		0	-	4	KHz
SC9686T3-FP18	B0-TR-Q					
$t_{w(FWD)}$	正向脉冲宽度		38	45	52	us
$t_{\text{w(REV)}}$	反向脉冲宽度		153	180	207	us
t _{w(ND)}	无方向脉冲周期		306	360	414	us
f_{FWD}	正向最高频率		0	-	12	KHz
f_{REV}	反向最高频率		0	-	4	KHz
f _{ND}	无方向最高频率		0	-	2.2	KHz

8.3 磁特性

符号	参数	测试条件	最小值	典型值	最大值	单位
$\triangle B_{limit}$	极限阈值		0.53	0.75	0.97	mT
$\triangle B_{limit_drift}$	极限阈值偏移		-5	-	3	%
$\triangle B_{LR}$	报警阈值		1.02	1.60	2.18	mT
$\triangle B_{LR_drift}$	报警阈值偏移		-5	-	3	%
$\triangle B_{LR}/\triangle B_{limit}$	阈值比		1.7	2.0	2.5	

SC9686

PWM协议输出三线差分速度传感器IC

$ riangle B_{ ext{start_up}}$	非校准模式(启动期间)检测磁场 边缘所需的差分磁场变化量	Option 00	0.53	0.75	0.97	mT _{pk-pk}
		Option 01	1.22	1.50	1.78	mT _{pk-pk}
		Option 10	2.14	2.50	2.86	mT _{pk-pk}
		Option 11	4.44	5.00	5.56	mT _{pk-pk}
HYS _{min}	速度通道最小磁滞阈值	Option 0	0.53	0.75	0.97	mTpkpk
ПТЭ _{min}		Option 1	1.22	1.5	1.78	mTpkpk
HYS _{adaptive}	速度通道, 自适应磁滞阈值	Option 0	-	12.5	-	%
		Option 1	-	25	-	%

9. 功能框图

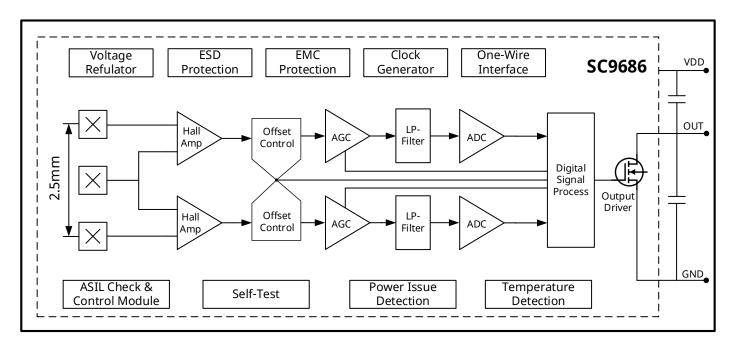


图 3 功能框图

10. 功能描述

10.1 非校准和校准模式

经过初始校准延迟时间(t_{d_input})后,差分磁信号 $\triangle B$ 由模数转换器(ADC)跟踪,并在数字电路中进行监测。为了检测信号,输入差分磁信号需要超过 DNC(数字噪声常数),当信号斜率被识别为上升沿(或下降沿),且信号变化超过 DNC,就会记录第一个极值,并触发第一个输出脉冲。DNC 值随磁场振幅变化,导致磁输入信号和输出信号之间的相移变化。数字噪声常数由信号幅值决定。第一个 DNC(=2 $X \triangle B_{limit}$),如图中箭头所指。当信号变化再次超过下一个下降沿(相反则为上升沿)的新 DNC 值(按 ΔB (min1 + max 1) /2 计算)时,触发第二个输出。当记录到最大和最小值时,将进行偏移修正。这将导致输出信号相移,传感器进入校准模式。在校准模式下,差分磁信号的过零触发。在校准模式下,最小/最大检测值降至 pk-pk 的 1/4。最小 DNC 为 2 $X \triangle B_{limit}$ 。在此范围内,连续速度脉冲的标称延迟约为180°。

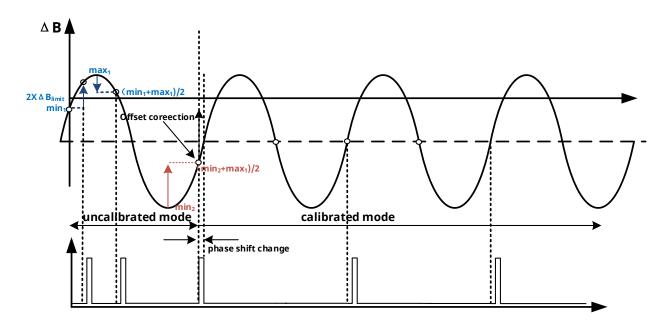


图 4 非校准模式到校准模式的转换

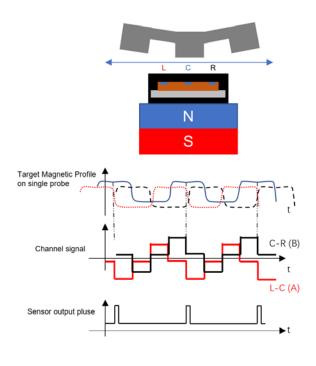


图 5 方向检测

用作输出切换通道的通道 A 或通道 B。这在启动时由第一个切换通道决定。非切换通道用于方向检测和计算。

10.2 磁滞定义

自适应磁滞在小气隙(大信号)时具有大磁滞的优势。与固定磁滞相比,微小的振动不会导致额外的开关。根据图 6,自适应磁滞的计算公式为峰值至峰值速度信号差值的 25%。最小磁滞由微调设置得出。

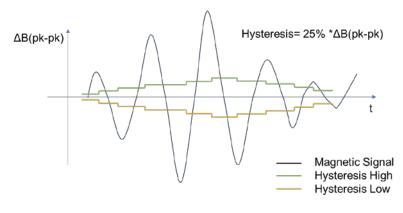


图 6 自适应迟滞

10.3 方向变化、振动和异常状态

在正常运行过程中,SC9686 会受到目标旋转方向变化、目标振动以及气隙突变等异常事件的影响。在校准过程中,带有方向信息的输出脉冲会立即传输到输出端。根据目标设计、气隙和目标相位的不同,方向可能会出现瞬间错误。在运行模式下改变方向后,方向变化会立即传输到输出端。

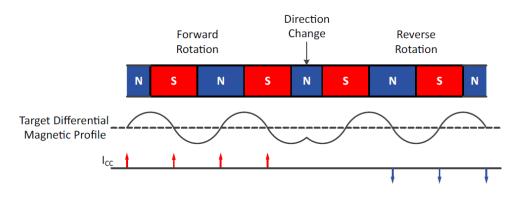
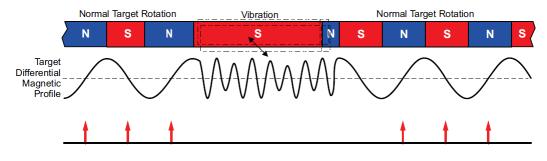
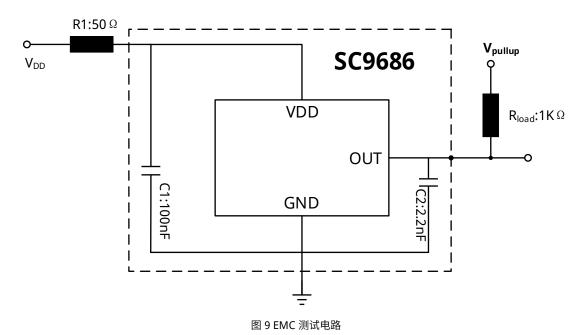


图 7 方向改变




图 8 振动行为

11. EMC(电磁兼容)

11.1 EMC 电路(典型应用电路)

下面显示了带有反向偏置和过压保护功能的 EMC 测试电路。

11.2 ISO 7637

参考 ISO 7637-2; 2004; ΔB=2mT(正弦信号振幅); V_{DD}=13.5V; f_B =100Hz,T_A=25°C,R_M=30Ω

符号	参数	级别/类型	等级
	测试脉冲 1	IV /-100V	С
	测试脉冲 2a	IV /75V	Α
	测试脉冲 2b	- /10V	С
V	测试脉冲 3a	IV /-150V	Α
V _{MEC_7637_2}	测试脉冲 3b	IV /100V	А
	测试脉冲 4	IV /-7V	В
	测试脉 5a	IV /86.5V	С
	测试脉冲 5b	Us=28.5V	С

PWM协议输出三线差分速度传感器IC

参考 ISO 7637-3 1995; ΔB=2mT(正弦信号振幅); V_{DD}=13.5V; f_B =100Hz,T_A=25°C,R_M=30Ω

符号	参数	级别/类型	等级
	测试脉冲 1	IV /-30V	А
V	测试脉冲 2	IV /30V	А
V MEC_7637_3	测试脉冲 3a	IV /-60V	А
	测试脉冲 3b	IV /40V	А

11.3 ISO 11452

参考 ISO11452-3 2001; ΔB=20Gs, V_{DD}=13.5V; f_B =100Hz, T_A=25℃

符号	参数	级别/类型	等级
E _{TemCell}	TEM 测试	IV/250V/m	CW; AM=80%, f=1kHz

参考 ISO11452-4 2011; Stress =1-400MHz; V_{DD} =13.5V, f_B =100Hz; T_A =25 $^{\circ}$ C

符号	参数	级别/类型	等级
BCI open		200mA	I
BCI close		200mA	I

参考 ISO11452-8 2007; V_{DD}=13.5V,f_B =100Hz; T_A=25°C

符号	参数	级别/类型	等级
ITMF_DC		2mT	I
ITMF_AC			II

12. 封装信息

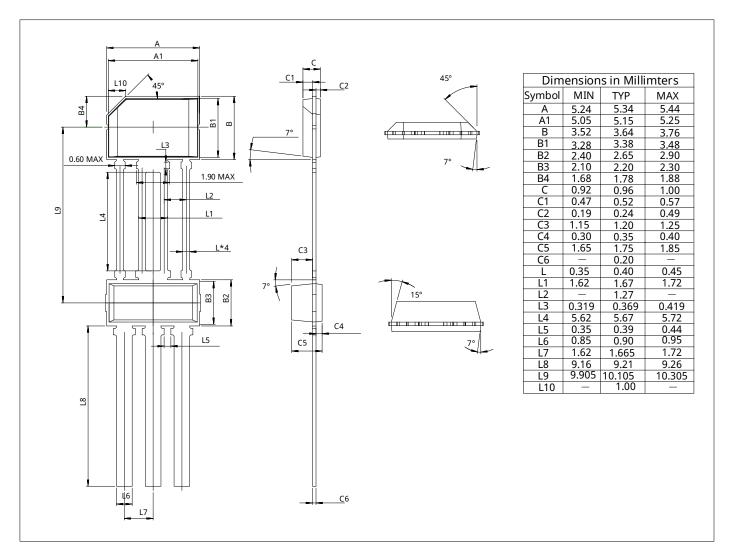


图 10 封装尺寸

13. 编带信息

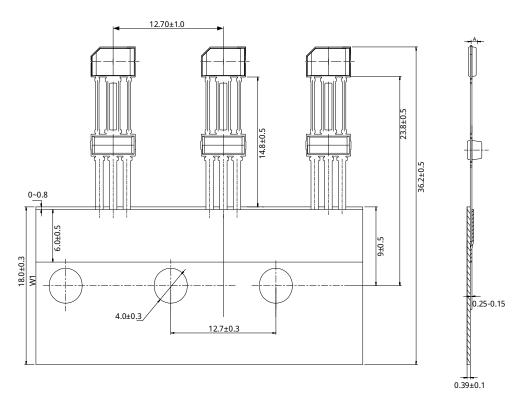


图 11 编带尺寸

14. 历史版本

版本号	日期	描述
Rev.E0.1	2022-04-27	初版规格书
Rev.E0.2	2023-12-12	增加振动抑制
Rev.A1.0	2025-04-02	正式发布