

带唤醒功能可配置数字输出高速线性霍尔

1. 产品特性

- 支持最高32K高速应用
- 集成微功耗模式及唤醒功能
- 灵敏度和静态输出可配置
- 支持8M SPI通信及菊花链连接
- 集成自检功能,快速定位每个按键状态
- 工作电压范围: 3.0V-5.5V
- 集成12BIT ADC
- SOT23-6L & DFN2*2-8L封装类型

2. 典型应用

- 模拟磁轴键盘
- 轻触开关
- 磁静音开关
- 摇杆应用

3. 产品描述

SC4391 是一款带唤醒功能可配置数字量输出的线性霍尔芯片,其内部集成磁传感元件和高精度 ADC 采样模块,能够将外部磁场的变化精确转换为数字信号输出。

芯片内置多组可配置寄存器,通过配置寄存器可改变线 性霍尔的灵敏度及静态输出电压,满足不同灵敏度和静 态输出电压应用需求。同时芯片的工作模式可通过寄存 器配置,满足客户对速度及功耗的不同需求。

实际应用中,主机端可以通过 4 线 SPI 通讯协议获取芯片 12BIT ADC 数字数据。多个 SC4391 芯片可以通过菊花链方式扩展,从而实现高速、高精度多点检测及数据传输。

SC4391 提供 DFN2020-8L 及 SOT23-6L 两种不同封装类型,100%无铅无卤绿色封装,符合环保要求

图1. DFN2*2-8L(左) & SOT23-6L(右)封装示意图

目录

1. 产品特性 1	9. SPI 传输特性
2. 典型应用 1	10. 功能框图
3. 产品描述 1	11. 功能描述
4. 引脚定义 3	12. 典型应用
5. 订购信息	<i>13. 封装信息 "</i> SOT23-6(S6)" 1
6. 极限参数5	14. 封装信息 "DFN2*2-8L(DT)"
7. 静电保护 5	15. 历史版本1
9. 工作会物 6.	

4. 引脚定义

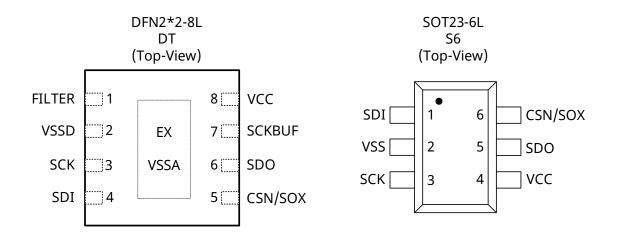
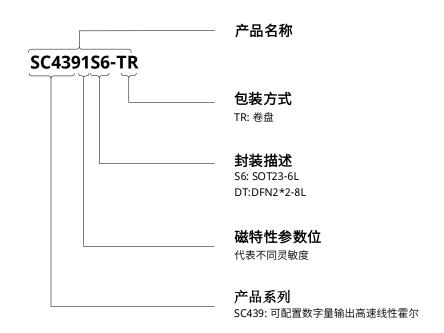


图 2. DFN2*2-8L(左) & SOT23-6L(右)引脚定义图

名称	封装类型		218th ** #il	***		
白柳	DFN2*2	SOT23-6	引脚类型	描述		
FILTER	1		I/O	外部电容滤波器,推荐 4.7nF 电容		
VSSD	2	2	GND	数字地		
SCK	3	3	I	SPI 时钟输入		
SDI	4	1	I	SPI 数据输入		
CSN/SOX	5	6	I/O	SPI CSN 信号输入或 SOX 输出		
SDO	6	5	0	SPI 数据输出		
SCKBUF	7		0	SCK 缓冲输出,可通过寄存器配置		
VCC	8	4	PWR	电源供电		
VSSA	EX		GND	模拟地		


5. 订购信息

产品名称	灵敏度(mV/Gs) ⁽¹⁾	工作温度(°C)	封装形式	包装形式	数量
SC4391S6-TR	2.4~8.6	-40-85	SOT23-6L	卷盘	3000 颗/盘
SC4391DT-TR	2.4~8.6	-40-85	DFN2*2-8L	卷盘	3000 颗/盘

备注:

(1) 此灵敏度数据均为 3.3v 应用条件下

订购信息格式说明

6. 极限参数

符号	参数	测试条件	最小值	最大值	单位
VCC	电源端耐压	B = 0mT, T _A = 25°C	-0.3	6.0	V
SDO,CSN	输出端耐压	B = 0mT, T _A = 25°C	-0.3	6.0	V
SCK,SDI,SOX	输入端耐压	B = 0mT, T _A = 25°C	-0.3	6.0	V
T _A	工作温度范围		-40	85	°C
T _J	结温		-55	165	°C
T _{STG}	储存温度		-65	175	°C

备注:

以上列出的应力可能会对器件造成永久性的损害,长时间暴露在绝对最大额定值条件下可能会影响器件的可靠性。

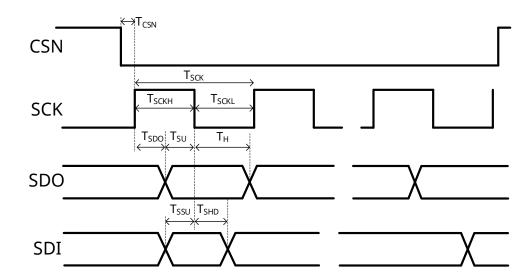
7. 静电保护

符号	参数	最小值	最大值	单位
V _{ESD}	人体失效模型,参考 ANSI/ESDA/JEDEC JS-001 标准(HBM) ⁽¹⁾	-4	+4	KV

备注:

(1)人体模型(HBM) 试验按AEC-Q100-002 标准进行。

8. 工作参数


(工作电压 3.3V, 环境温度 25℃ ,另有说明除外)

符号	参数	测试条件		典型值	最大值	单位
V _{cc}	工作电压	$T_{J} < T_{J(Max.)}$	3	3.3	5.5	V
I_{CC}	平均工作电流	$f_{SCANNING} = 4kHz$, $t_{SETTING} = 2\mu s$, $n_{ADC} = 4$	-	0.8	1	mA
I_{LP}	微功耗模式平均电流	t _{LP} =50mS	-	2	ı	μΑ
t _{LP}	微功耗扫描间隔时间		-	50	1	ms
V_{UVLO}	欠压指示电压	VCC 供电电压下降到 SPI 输出报 Fault 故障	-	2.3	-	V
f _{OSC}	内部时钟	内部时钟在初始化时修正,设置 CFG_OSC32M 寄存器	-	32	1	MHz
		设置 CFG_SCAN 寄存器: 00	-	32	-	
£ .	 键盘数据扫描频率	设置 CFG_SCAN 寄存器: 01	-	16	-	kHz
f _{SCANING}		设置 CFG_SCAN 寄存器: 10	-	8	-	КПZ
		设置 CFG_SCAN 寄存器: 11	-	4	-	
t _{SETTING}	模拟信号建立时间设定	4bit 可配置 2μS-80μS,详见寄存器表	2	-	80	μs
f _{ADCCLK}	ADC 采样时钟	设置 CFG_ADCSCK 寄存器 0:16MHz; 1:8MHz	-	8/16	-	MHz
		设置 CFG_ADCNUM 寄存器: 00	-	1	-	- times
_	ADC 采样次数设置	设置 CFG_ADCNUM 寄存器: 01	-	2	-	
n _{ADC}		设置 CFG_ADCNUM 寄存器: 10	-	4	-	
		设置 CFG_ADCNUM 寄存器: 11	-	8	-	
t _{ADCSAMP}	单次 ADC 采样时间	ADC 采样时钟为 16MHz 时	-	1.5	-	μs
V _{SENSC}	灵敏度粗调范围	3bit 可配置,设置 CFG_SCOARSE 寄存器	2.4	-	8.6	mV/Gs
V _{SENSC_STEP}	灵敏度粗调节步距	调节 Step	-	20	-	%
V _{SENSF}	灵敏度细调范围	5bit 可配置,设置 CFG_SFINE 寄存器	0	-	25	%
V _{SENSF_STEP}	灵敏度细调节步距	LSB 调节 Step	-	0.78	-	%
DOL	极性(DFN 封装)	配置 CFG_POL 寄存器:0	-	S	-	-
POL _{DFN}	极性(DFN 封装)	配置 CFG_POL 寄存器:1	-	N	-	-
DOL	极性(SOT23 封装)	配置 CFG_POL 寄存器:0	-	N	-	-
POL _{SOT23}	极性(SOT23 封装)	配置 CFG_POL 寄存器:1	-	S	-	-
V	**	配置 CFG_VQSET 寄存器:0	-	3890	-	LSB
V_{QC}	静态输出电压粗调范围	配置 CFG_VQSET 寄存器:1	-	2048	-	LSB
V_{QF}	静态输出电压细调范围	6bit 可配置,设置 CFG_VQFINE 寄存器	-500	-	500	LSB
V _{QF_STEP}	静态输出电压调节步距	LSB 调节 Step	-	18	-	LSB

9. SPI 传输特性

(SC4391 支持 4 线从属 SPI 接口,上升沿输出数据,下降沿采样数据,支持全双工数据传输,数据位宽为 8 位)

符号	参数	最小值	典型值	最大值	单位			
SPI 时序参	SPI 时序参数							
T _{CSN}	CSN 设置时间	20	-	-	ns			
T _{SCKH}	CLK 高电平时间	40	-	-	ns			
T _{SCKL}	CLK 低电平时间	40	-	-	ns			
T _{SCK}	CLK 周期时间限制	60	-	-	ns			
T _{SSU}	SDI 设置时间	10	-	-	ns			
T_{SHD}	SDI 保持时间	10	-	-	ns			
T _{SDO}	SDO 输出延迟	-	-	20	ns			
T _{SU}	SDO 设置时间	10	-	-	ns			
T _H	SDO 保持时间	4	-	-	ns			
SPI 电气参	参数							
V _{IH}	输入阈值电压高	-	-	2	V			
V _{IL}	阈值电压低	0.8	-	-	V			
VIN _{HYS}	磁滞	-	0.5	-	V			
V _{OH}	输出电压低	0.8*V _{CC}	-	-	V			
V _{OL}	输出电压高	-	-	0.2*V _{CC}	V			

10. 功能框图

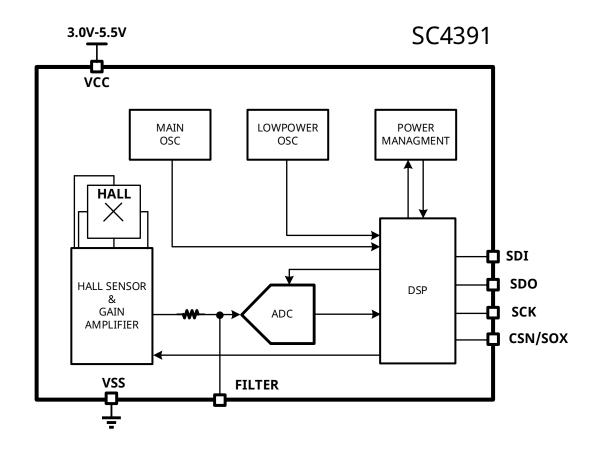


图 3. 功能框图概览

11. 功能描述

通讯协议: "SC4391 有两种通讯模式,即指令模式和 SPI 通信模式;在指令模式下,仅用 SCK 一个端口实现通信协议,通过计算 SCK 的占空比以及高电平时间,使传感器进入相应的工作模式:正常模式、微功耗模式或自检模式。

序号	工作模式	对应进入条件
1	正常工作模式	SCK 占空比>25%,正常 50%占空比
2	微功耗工作模式	SCK 高电平时间,t _{LPOWER} >100μs
3	自检模式	连续 3 次,SCK 占空比<25%

在 SPI 通信模式下,通过 CSN、SCK、SDI 和 SDO 四个端口实现 SPI 协议。此时,SCK 同时作为寄存器移位时钟。为了区分指令协议与正常的读写时钟,SCK 作为时钟时,其频率须在 4~8MHz 的范围内。读写数据兼容 SPI 的数据格式。本芯片 SPI 模式仅支持上升沿输出数据,下降沿采样数据。

12. 典型应用

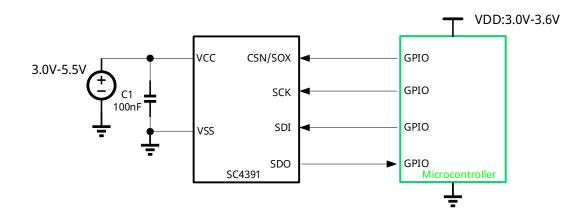
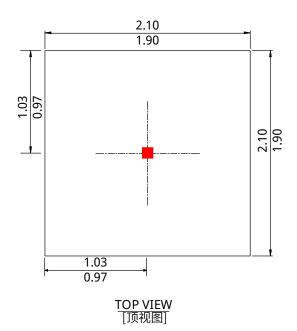


图 4. 典型应用线路图

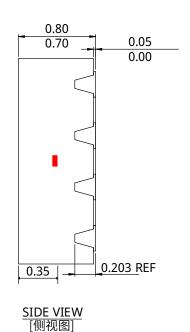
13. 封装信息 "SOT23-6(S6)"

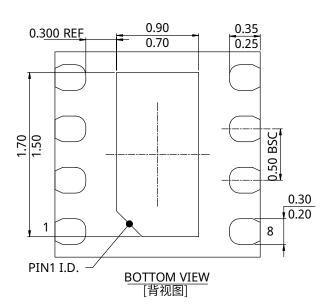
6-脚 S6 封装 单位: mm 2.92 0.813 1.25 1.05 0.75 1.61 0.55 0.10 0.00 1.463 10° 3.02 2.82 0.25BSC 0.5 1_{0.3}1← 0.30 1.72 2.95 1.52 2.65 8° 0.95 BSC 0.2 0.1

注:


- 1.供应商可选的实际本体和管脚形状尺寸位于图示范围内。
- 2.高度不包括模具浇口溢料。

如果未指定公差,则尺寸为公称尺寸。




14. 封装信息 "DFN2*2-8L(DT)"

8-脚 DFN 封装

单位: mm

注:

- 1.供应商可选的实际本体和管脚形状尺寸位于图示范围内。
- 2.高度不包括模具浇口溢料。

如果未指定公差,则尺寸为公称尺寸。

15. 历史版本

版本	日期	描述
Rev.E0.1	2024-06-02	初始规格书
Rev.A1.0	2025-04-01	初始版本发布