

超高压数字锁存霍尔传感器

1. 产品特性

• AEC-Q100车规认证

• 高斩波频率

• 超高耐压: 240V

宽工作电压范围: 4.0V 到 120V宽工作温度范围: -40℃到 150℃

• EMC 性能良好

• 小封装形式:

- TO-92S(UA)

SOT23-3L(SO)

2. 产品应用

- 汽车电子
- 阀门及电磁阀状态检测
- 无刷电机位置传感器
- 接近开关
- 转速表

3. 产品描述

SC2919采用超高压BiCMOS技术生产,是斩波稳定霍尔效应传感器,提供具有卓越灵敏度、温度稳定性和综合保护功能的磁传感解决方案。

SC2919通过动态偏移抵消,可以实现卓越的高温性能,有效降低了由器件注塑、温度和热应力引起的失调电压。每个器件在单个硅芯片上包括一个高压稳压器,霍尔电压发生器,小信号放大器,斩波稳定器,施密特触发器,和一个可达到10mA灌电流能力的漏极输出。

SC2919集成稳压器允许电源电压4.0V至120V,使该器件适用于广泛的汽车和工业应用。

SC2919提供小型3脚直插TO-92S封装(UA)和3脚SOT23-3L(SO)封装,100%无卤绿色框架,符合环保要求。

图1 封装外观图

目录

1. 产品特性1
2. 产品应用1
3. 产品描述1
4. 引脚定义3
5. 订购信息4
6. 极限参数5
7. 静电保护5
8. 热特性5
9. 工作参数6
9.1. 电参数6
9.2. 磁参数6

10. 特性曲线 7
11. 功能框图8
12. 功能描述
12.1. 磁场方向定义9
12.2. 传输函数9
13. 典型应用 10
14. 封装信息 UA 11
15. 封装信息 SO 12
16. 历史版本

4. 引脚定义

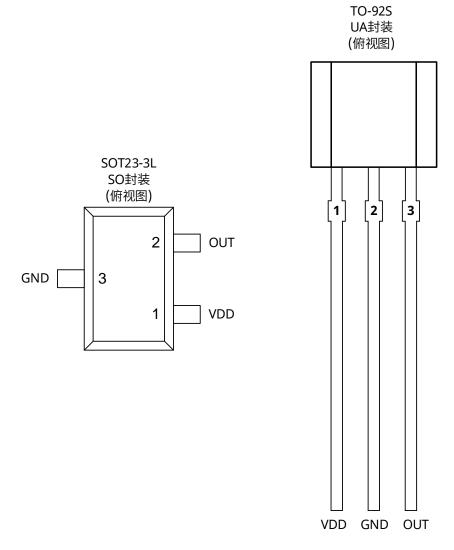
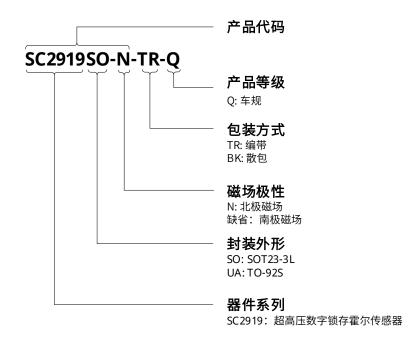


图 2 引脚描述


	引脚		类型	144.7- 14
名称	UA	SO	尖尘	描述
VDD	1	1	电源	4.0V 到 120V 供电电源
GND	2	3	地	地
OUT	3	2	输出	漏极开路输出,使用需要外接上拉电阻

5. 订购信息

产品名称	丝印	感应极性	工作点(Gs)	释放点(Gs)	工作温度(℃)	封装形式	包装方式	数量
SC2919SO-N-TR-Q	2919	N	-70	+70	-40~150	SOT23-3L	编带	3000 颗/盘
SC2919UA-BK-Q	2919	S	+70	-70	-40~150	TO-92S	散包	1000 颗/袋
SC2919UA-N-BK-Q	2919	N	70	-70	-40~150	TO-92S	散包	1000 颗/袋

订购信息格式说明

6. 极限参数

工作温度范围内(除非另有说明)(1)

符号	参数	测试条件	最小值	最大值	单位
V_{DD}	电源耐压		-0.5	240	V
V _{OUT}	输出耐压	1.0K 欧姆上拉电阻,不超过 5 分钟	-0.5	240	V
I_{sink}	输出灌电流		-	10	mA
T _A	工作温度		-40	150	°C
T _J	工作结温		-55	165	°C
T _{STG}	储存温度		-65	175	°C

备注:

(1) 高于此处列出的条件可能会导致器件永久损坏,长时间暴露在绝对最大额定值条件下可能会影响器件的可靠性。

7. 静电保护

符号	参数	测试条件	最小值	最大值	单位
V _{ESD_HBM}	НВМ	人体模型(HBM)测试按照 AEC-Q100-002 标准	-2	+2	kV
V _{ESD_CDM}	CDM	充电器件模型(CDM)测试按照 AEC-Q100-011 标准	-750	+750	٧

8. 热特性

符号	参数	测试条件	值	单位
UA 封装热阻		单层 PCB,JEDEC 2s2p 和 1s0p 分别在 JESD 51-7 和 JESD 51-3 中定义	200 ⁽¹⁾	°C/W
$R_{ hetaJA}$	SO 封装热阻	单层 PCB,JEDEC 2s2p 和 1s0p 分别在 JESD 51-7 和 JESD 51-3 中定义	300 ⁽¹⁾	°C/W

备注:

(1)最大工作电压必须满足功耗和结温的要求

9. 工作参数

9.1. 电参数

工作温度范围 V_{DD} = 5.0V (除非另有说明)

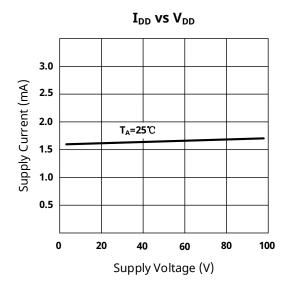
符号	参数	测试条件	最小值	典型值(1)	最大值	单位
V _{DD}	工作电压 ⁽²⁾	$T_{J} < T_{J(Max.)}$	4.0	12	120	V
I _{DD(off)}	开启状态,工作电流	V _{DD} =4.0 to 24V, T _A =25°C	0.8	1.52	2.0	mA
T	 关闭状态,工作电流	V _{DD} =2.5 to 24V, T _A =25°C	0.8	1.52	2.0	mA
$I_{DD(on)}$	大肉体态,工作电流 	V _{DD} =48V, T _A =25°C		1.63	,	mA
I_{QL}	漏电流	Output Hi-Z	-	-	1	μΑ
R _{DS (on)}	场效应管导通电阻	V _{DD} =5V, I _O =10mA, T _A =25°C	1	40	ı	Ω
R _{DS (on)}	场效应管导通电阻	V _{DD} =5V, I _O =10mA, T _A =125°C	-	70	,	Ω
t _{on}	上电时间	V _{DD} ≥5.0V	-	35	50	μs
t _d	输出延迟时间	B _{RP} to B _{OP}	•	3	5	μs
t _r	输出上升沿时间 (10% to 90%)	R1=1Kohm, Co=50pF	-	-	0.5	μs
t _f	输出下降时间(90% to 10%)	R1=1Kohm, Co=50pF	•	-	0.2	μs

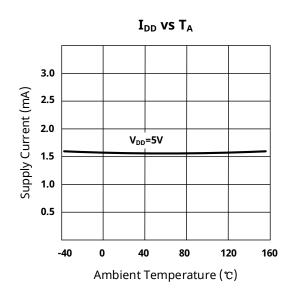
备注:

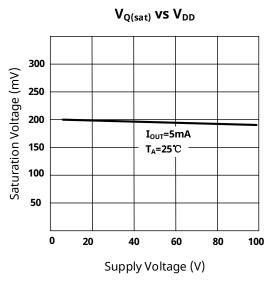
- (1) 典型值是环境温度 25 ℃, VDD =5.0V 条件下的测试值
- (2) 工作电压必须调整最大电压的功耗和结温,见热特性

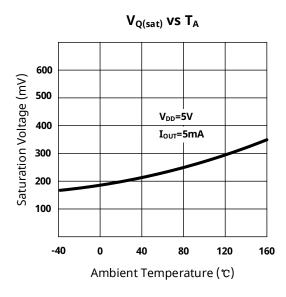
9.2. 磁参数

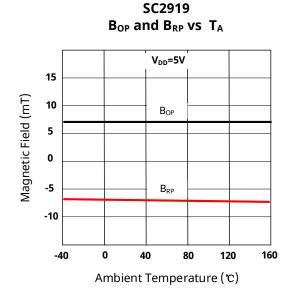
工作温度范围 V_{DD} = 5.0V (除非另有说明)

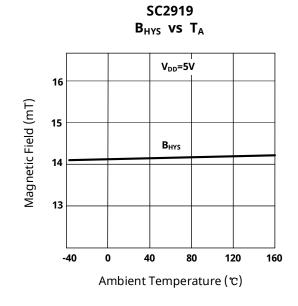

符号	参数	测试条件	最小值	典型值	最大值	单位	
f_{BW}	带宽		20	-	-	kHz	
SC2442 +7	SC2442 +7.0 ⁽¹⁾ /-7.0mT ⁽²⁾						
Вор	磁场开启点	T _A =25°C	+4.0(1)	+7.0	+10.0	mT ⁽²⁾	
B _{RP}	磁场关闭点		-10.0	-7.0	-4.0	mT	
B _{HYS}	迟滞		8.0	14.0	20.0	mT	
Bo	磁场对称性	B _O =(B _{OP} +B _{RP})/2	-3.0	0	+3.0	mT	


备注:


- (1) 磁感应强度 B,南极性磁场为正值,北极性磁场为负值
- (2) 1mT=10Gs




10. 特性曲线



11. 功能框图

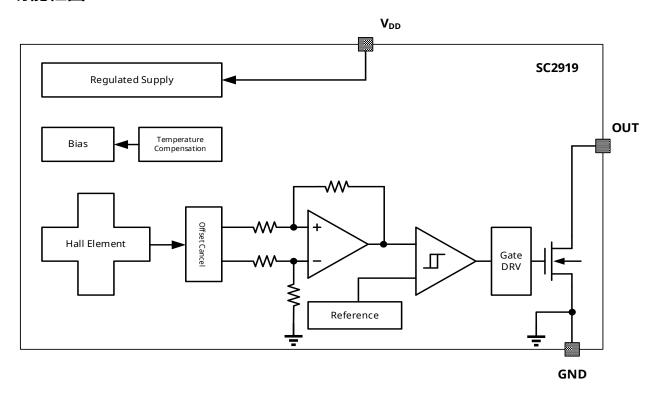


图 3 功能框图

12. 功能描述

SC2919 芯片是一款数字锁存输出斩波稳定的磁霍尔传感器。该器件的供电电压在 4.0 到 120V 之间。此外,该器件可以承受高达 240V 的瞬态电压。

当垂直作用于霍尔元件的南极磁场强度超过工作点阈值时,SC2919 输出低电平(开启),输出端可灌电流 10mA,输出电压为饱和电压 $V_{Q(sat)}$ 。 当磁场强度降低到释放点 B_{RP} 以下时,器件输出高电平(关断)。磁场工作点和释放点的差异即为器件的磁滞 B_{HYS} ,这种内建的迟滞使器件可以免受外部机械振动和电气噪声的干扰。

SC2919 器件输出端需外接一个上拉电阻。输出端可以被上拉到 V_{DD} 或其他不同的电压电源,这使得器件与控制器电路的接口更加容易。

12.1. 磁场方向定义

磁场S极正对芯片丝印面定义为正磁场。

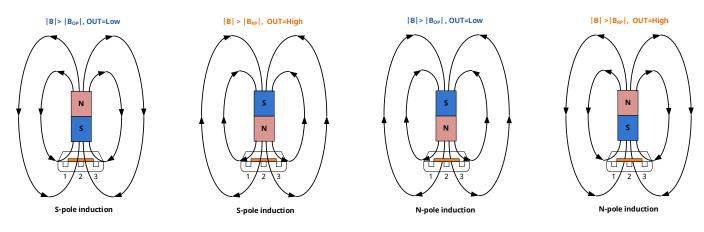


图 4 磁场方向定义图

12.2. 传输函数

在磁场强度小于 B_{OP} 且大于 B_{RP} 的迟滞区上电时,允许不确定的输出状态。在磁场强度第一次超出 B_{OP} 或 B_{RP} 之后,就可以达到正确的状态。如果磁场强度大于 B_{OP} ,则输出被拉低。如果磁场强度小于 B_{RP} ,则输出被释放。

B_{OP}—开启器件输出的磁场强度,开启(低电平)状态。

B_{RP}—释放器件输出的磁场强度,关断(高电平)状态。

 $B_{HYS} = B_{OP} - B_{RP_o}$

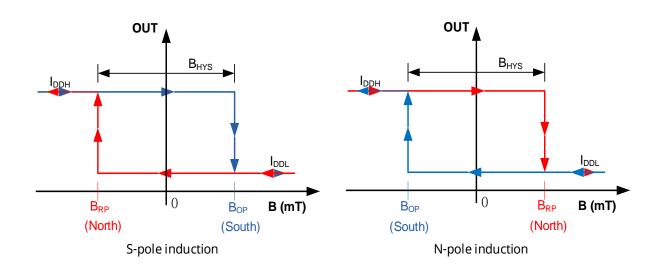


图 5 传输曲线图

13. 典型应用

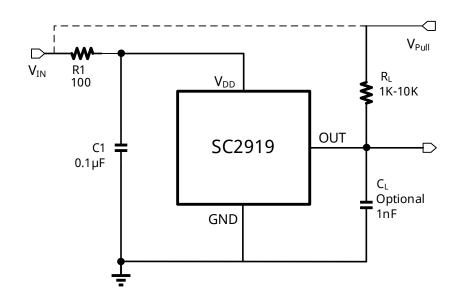
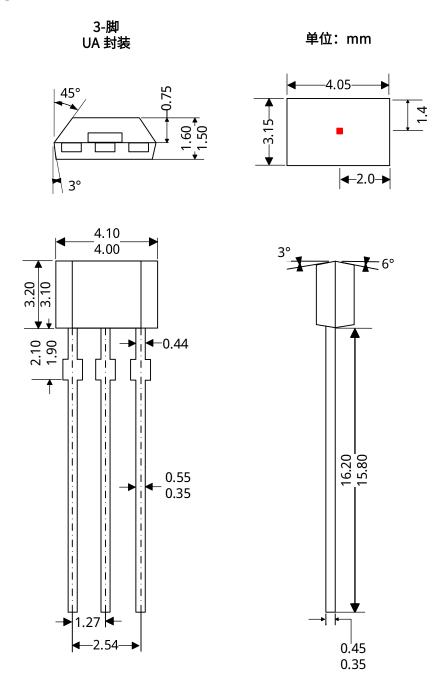


图 6 典型应用框图

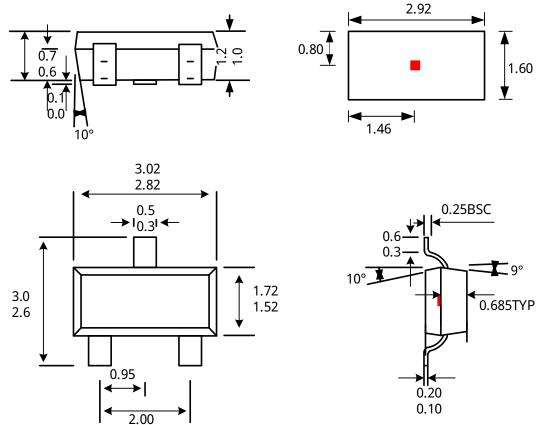
SC2919 内部有电压调节器,可以在宽供电电压范围内工作。当器件工作于非稳压电源供电的应用时,必须在外部添加瞬态保护。对于使用稳压电源线路供电的应用,可能仍然需要 EMI/RFI 保护。强烈建议电源端与接地端使用外接电容,可降低外部噪声及内部斩波频率技术产生的噪声,建议靠近芯片 V_{DD} 电源端并联 C_1 电容到地,其典型值为 $0.1\mu F_0$ 。同时在外部可选配串联电阻 R_1 其典型值为 $100\Omega_0$ 。输出电容 C_L 用作输出滤波,典型值为 $1nF_0$


根据系统带宽规范选择一个 C_L 值($R_L=10k\Omega$):

SC2919 器件的输出级是一个漏极开路 NMOS 管,可提供 10mA 的负载能力。调节上拉电阻 R_L 的值使得其正常工作。 R_L 为开漏输出提供一个高电平。通常情况电流越小越好,但是更快的瞬态响应和带宽需要,接更小的电阻 R_L 以实现更快的切换。

VPULL 不限于 VDD,可以连接到其他参考电压。该引脚的允许电压范围在极限参数中规定。

14. 封装信息 UA


备注:

- (1)供应商可选的实际本体和管教形状、尺寸位于图示范围内
- (2)高度不包括模具浇口溢料

15. 封装信息 SO

3-脚 单位: mm SO封装

备注:

- (1)供应商可选的实际本体和管脚形状尺寸位于图示范围内
- (2)高度不包括模具浇口溢料

如果未指定公差,则尺寸为公称尺寸

1.80

16. 历史版本

版本号	日期	描述
Rev.A1.0	2020-11-19	统一格式发布
Rev.A1.1	2025-03-16	修改 VDD/VOUT 耐压,增加 SO 封装